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Introduction



Overview

We consider that neural networks are particle systems. It is possible to
describe them through 3 distinct scales :

Macroscopic scale Mesoscopic scale Microscopic scale

GOAL : Quantitative analysis of the asymptotic regime

" (mesoscopic scale), — macroscopic scale "
e—0
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Behavior of a single neuron

e We focus on the voltage through the membrane of a neuron.
e Hodgkin & Huxley (52") : precise but complicated model [gif] .

e FitzHugh-Nagumo : simplified model which captures the main features

FitzHugh-Nagumo’s model

dve = (N(Vt) — W + Iext) dt + ﬁdBt,
th = /A\(Vt7 Wt) dt,

e 2 equations for periodic behavior (v; : voltage, w; : adaptation
variable) .
e Confining assumptions to ensure spikes :

A(v,w)=av—bw + c, "N(v) =v—v3".

e Noise to take into account random fluctuations. 3/18



Microscopic description

FitzHugh-Nagumo neural network of size n

For / between 1 and n :

dvi = (N(v{) — wj + Ii,) dt + V2dB.,

dw] = A(v}, w})dt.

e Neurons interact following Ohm's law
1 n . )
lext = 7} Z;CD(XI'-,XJ')(VI' - Vi) o
=

e The conductance ®(x;, x;) between neuron i and j depend on their
spatial location x; and x;.
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Mesoscopic description : n — 400

FitzHugh-Nagumo’s mean-field equation
{ N(v) — w — Ko(f) W
f

Of + Vi w) - — 0°f =0,
L A(v, w) J

e f(t,x,v,w) is the probability of finding neurons at time ¢ > 0 and
position x € K, with potential v € R and adaptation variable w € R.

e [Co(f) is the non-local term due to interactions between neurons

Ko(f)(x,v) = / O(x, x" ) (v — V) F (X', v, w')dx dv'dw'.
JKxR2
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Regime of strong interactions

Weak-Long / Strong-Short decomposition

d(x,x') = V(x,x") + % do(x — x')

weak-long range interactions . .
g g strong-short range interactions

The mean-field equation rewrites

N(v) — w — Ku(f€) W

fa € € A € /)( G )€ €
O f +v<v,w>[ o fJ — 32f° = 70()V [(v —V)Ffe],
v, w

where

) ' 1 f

p5(x) = /R f¢dvdw and V<(t,x) = A vf dvdw.
JR2 o JR2

Main goal

Analysis of the regime of Strong/Local interactions, that is when € — 0. 4,15



Formal derivation




Strong interactions and concentration phenomenon

(l) : Otf(-ﬁ-V(V?W)'
A(v, w)

(N(V)W/cw(f'~)) } ’ p
fo|=00f =20, [(v = V)fe],

e £ converges to a local equilibrium : [ |v — V<2 x (1)dvdw

1 .1 ' i
w2 <(f:[f>»~ ® Fﬁ) — [ v VP fedudw = 0.
/)O pO JR2 e—0

where V5 is the Wasserstein distance of order 2. In the end, we obtain!
F(t v W) = By(en)(V) @ F(t.x w) + O(VE),
where (), F) satisfies
3V = N(V) =W — (W, po(x)V — WV %, (poV)(x)),
OtF + 0w (A(V,w)F) =0, (1)

po(X)W = / wF dw.
R

. 1. Crevat, Faye, Filbet (19)
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Concentration’s profile

What is the profile of concentration?

y y
1

Concentration with Gaussian profile Concentration with triangular profile

Here are plots of

1 v
y - \ﬁg \ﬁ )
for /e =1;0.7;0.5 and g a gaussian profile (fig. 1) and triangular profile

(fig. 2).
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Formal derivation of the profile

e It is driven by diffusion term with respect to the voltage variable v

‘ N(v) —w — Ky(f€) 7 o5 .

Oef +V(wy: ffl =0, | —(v=VY)f-+0,0f°,
A(v, w) ¢

e 7 converges to the local equilibrium :

fe(t,x,v,w) NOJM (v =V)® F(t,x,w),

M .
s Po/ €

where M /(v — V) = - Po exp </2)0(v — VF)2>.

Goal

Rigorously prove that the profile is Gaussian with quantitative estimates.
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Hamilton-Jacobi approach




Hopf-Cole transform of f¢

e Consider the Hopf-Cole transform? ¢¢ of £
1
F(t,x,v,w) =4/ — i exp (o (t,x, v, W)> .
2Te
We prove

Theorem (E. Bouin and A.B.3)

Suppose that in L2 (K x R?)
X
dx,vomw) =~y 24 00,
e—0 2
Then it holds in LS (R x K x R?)
s (txvw) = —2LD 1,y 210

e—0 2

2. Barles, Mirrahimi, Perthame (09)
3. In preparation
4. Mirrahimi, Roquejoffre (15) 10/18



Strategy : we write
P(t,x,v,w) = — 20 |v — VE(t, x) )P + eo5(t,x, v, w).
The correction ¢§ solves
€ € 1 € €
Hi[¢1] + ;J1[ff’1] = 0.

We look for sub/super-solution for the operator Hi + 1 Jf under the
form ¢_ = ¢1 — ¢, where J; [¢1] = 0 then apply a comparison principle.
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Kinetic approach




Formal derivation

e We consider a re-scaled version g of 7°

1 o )E
fe(t,x, v,w) = Eg{ (t.x.VH}/,WW(>.

Suppose #° = /e. Changing variables in the equation on € it yields

Equation on the profile

1
0:8° + Vv,w) [bog]** [pove+0.8°],

where by depends on 1/./¢ and 7. Therefore, we expect
g(t,x,v,w) - Ms(v) @ GE(t, x,w) + O (Ve).

Strategy
proving that g° converges to M, @ G.
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Weak convergence result




Weak convergence result

Theorem (F. Filbet and A.B.°)

Under suitable assumptions on fg, there exists C > 0 such that

xeK Po

1 1 o
sup W> <ﬂ(fe~, — My (- —V)® F) <C (eae + e Po f/f) :
0

foralle >0 and t > 0.

Here, W, stands for the Wasserstein distance of order 2.

Key arguments of the proof :

e Uniform moment estimates.

e Analytic coupling method ® in order to estimate the Wasserstein

distance between g and M @ G (G satisfies (1) after changing
variables) .

5. Concentration phenomena in Fitzhugh-Nagumo’s equations : A mesoscopic
approach, arXiv :2201.02363
6. Fournier, Perthame (20).
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Strong convergence results




Towards strong convergence : time dependent 6°

e We consider a re-scaled version g of 7°

1 — Ve )
fF(t,xﬁvAW):g—(gF (tfx.v v ,WW*).

9(
e (¢ = /e induces that at time ¢t = 0, it holds
. 1 . v —V§ .
fb(x,v,w)—\ﬁg()(x. \ﬁO,WV\/())A

e Therefore, we impose 0°(t = 0) = 1. The only suitable choice is

0((1_? X) _ \ﬁ 1 + 672/16(X)t/( ((71 - 1)

exponentially decaying remainder

The equation on g€ rewrites

. € € € 1, € € o €
9:8° + Vvw) - [bog°] = W()v[/’o vgs+0.g°].
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Strong convergence result

Theorem (A.B." )

Under suitable assumptions on f5, there exists C > 0 such that

ot
/ | F< — fHL,,QL(l )(s)ds < CeCty/e,
. O X v,w
for all ¢ > 0 and t > 0, where the limit f is given by
f(t,x,v,w) = M, ez (v = V)@ F,

where (V, F) solves (1).

7. Large coupling in a FitzHug-Nagumo neural network : quantitative and strong
convergence results, arXiv :2203.14558v2.
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Key arguments

o Relative entropy estimate yields g* ~ M ® GE+ O(y/e) in LT .
e—

e Proving that G converges towards G :

(1) We work on the re-scaled version H*

H¢ = / g (t.x.v,wf(3/2v> dv.
JR

(ii) L*-equicontinuity estimates for g¢ yield H¢ =, G+ O(+/e) in L.

€

(iii) Then we prove H* = G+ O(+/e) in L.
G—»
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H¢ converges towards G : simplified example

e We consider the diffusive scaling for Fokker-Planck equation
¢ € 1 € 1 € €
dtg + ;V'vxg — Zvv [Vg +vvg ] )
and we prove
G(:/g(dv—>G, where 0:G = A,G.
R e—0

e Define :
He(t,x) = / g(t,x —ev,v)dv.
JR
e H¢ SOLVES the limiting equation
O:H® = A HE.

e Therefore, it is sufficient to prove H° ~ G (i.e. equicontinuity for g¢).
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Conclusion and perspectives

Conclusion :

e [°° convergence estimates following a Hamilton-Jacobi approach.

e \Weak convergence result with the (formal) optimal convergence rate.
o [! convergence result with deteriorated convergence rate.

e We also prove a convergence result in (inverse Gaussian) weighted L°
spaces and recover the optimal rate by propagating regularity.
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