Concentration phenomena for a FitzHugh-Nagumo neural network

Alain Blaustein, joint work with Francis Filbet and Emeric Bouin 28 juillet 2022

Institut de Mathématiques de Toulouse

Introduction

Overview

We consider that neural networks are particle systems. It is possible to describe them through 3 distinct scales :

 $\underline{\mathsf{GOAL}}$: Quantitative analysis of the asymptotic regime

" (mesoscopic scale) $_{\epsilon}$ $\longrightarrow \atop \epsilon \to 0$ macroscopic scale "

Behavior of a single neuron

- We focus on the voltage through the membrane of a neuron.
- Hodgkin & Huxley (52'): precise but complicated model [gif] .
- FitzHugh-Nagumo : simplified model which captures the main features

FitzHugh-Nagumo's model

$$\begin{cases} dv_t = (N(v_t) - w_t + I_{\text{ext}}) dt + \sqrt{2} dB_t, \\ dw_t = A(v_t, w_t) dt, \end{cases}$$

- 2 equations for periodic behavior (v_t : voltage, w_t : adaptation variable).
- Confining assumptions to ensure spikes :

$$A(v, w) = av - bw + c$$
, " $N(v) = v - v^3$ ".

• Noise to take into account random fluctuations.

Microscopic description

FitzHugh-Nagumo neural network of size n

For i between 1 and n:

$$\begin{cases} & dv_t^i = \left(N(v_t^i) - w_t^i + \textit{I}_{\texttt{ext}}^i\right)dt + \sqrt{2}dB_t^i, \\ & dw_t^i = A(v_t^i, w_t^i)dt. \end{cases}$$

• Neurons interact following Ohm's law

$$I_{\text{ext}} = -\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i, x_j) (v_t^i - v_t^j).$$

• The conductance $\Phi(x_i, x_j)$ between neuron i and j depend on their spatial location x_i and x_j .

Mesoscopic description : $n \to +\infty$

FitzHugh-Nagumo's mean-field equation

$$\partial_t f + \nabla_{(v,w)} \cdot \left[\begin{pmatrix} N(v) - w - \mathcal{K}_{\Phi}(f) \\ A(v,w) \end{pmatrix} f \right] - \partial_v^2 f = 0,$$

- f(t, x, v, w) is the probability of finding neurons at time $t \ge 0$ and position $x \in K$, with potential $v \in \mathbb{R}$ and adaptation variable $w \in \mathbb{R}$.
- $\mathcal{K}_{\Phi}(f)$ is the non-local term due to interactions between neurons

$$\mathcal{K}_{\Phi}(f)(x,v) = \int_{K \times \mathbb{R}^2} \Phi(x,x')(v-v')f(x',v',w')dx'dv'dw'.$$

References

- E. Luçon and W. Stannat (14').
- S. Mischler, C. Quiñinao and J. Touboul (15').
- J. Crevat (19').

Regime of strong interactions

Weak-Long / Strong-Short decomposition

$$\Phi(x,x') = \underbrace{\Psi(x,x')}_{\text{weak-long range interactions}} + \underbrace{\frac{1}{\epsilon} \delta_0(x-x')}_{\text{strong-short range interactions}}.$$

The mean-field equation rewrites

$$\partial_t f^{\epsilon} + \nabla_{(v,w)} \cdot \left[\begin{pmatrix} N(v) - w - \mathcal{K}_{\Psi}(f^{\epsilon}) \\ A(v,w) \end{pmatrix} f^{\epsilon} \right] - \partial_v^2 f^{\epsilon} = \frac{\rho_0^{\epsilon}}{\epsilon} \partial_v \left[(v - \mathcal{V}^{\epsilon}) f^{\epsilon} \right],$$

where

$$\rho_0^\epsilon(x) = \int_{\mathbb{R}^2} f^\epsilon dv dw \ \text{ and } \ \mathcal{V}^\epsilon(t,x) = \frac{1}{\rho_0^\epsilon} \int_{\mathbb{R}^2} v f^\epsilon dv dw.$$

Main goal

Analysis of the regime of Strong/Local interactions, that is when $\epsilon \to 0$.

Formal derivation

Strong interactions and concentration phenomenon

$$(1): \partial_t f^{\epsilon} + \nabla_{(v,w)} \cdot \left[\begin{pmatrix} \mathsf{N}(v) - w - \mathcal{K}_{\Psi}(f^{\epsilon}) \\ \mathsf{A}(v,w) \end{pmatrix} f^{\epsilon} \right] - \partial_v^2 f^{\epsilon} = \frac{\rho_0^{\epsilon}}{\epsilon} \, \partial_v \left[(v - \mathcal{V}^{\epsilon}) f^{\epsilon} \right],$$

• f^{ϵ} converges to a local equilibrium : $\int |v - \mathcal{V}^{\epsilon}|^2 \times (1) \, dv \, dw$

$$W_2^2\left(\frac{1}{\rho_0^{\epsilon}}f^{\epsilon}, \frac{1}{\rho_0^{\epsilon}}\delta_{\mathcal{V}^{\epsilon}}\otimes F^{\epsilon}\right) = \int_{\mathbb{R}^2}\left|v-\mathcal{V}^{\epsilon}\right|^2 f^{\epsilon} dv dw \underset{\epsilon \to 0}{=} \mathcal{O}(\epsilon),$$

where W_2 is the Wasserstein distance of order 2. In the end, we obtain ¹

$$f^{\epsilon}(t, x, v, w) = \delta_{\mathcal{V}(t, x)}(v) \otimes F(t, x, w) + O(\sqrt{\epsilon}),$$

where (\mathcal{V}, F) satisfies

$$\begin{cases}
\partial_t \mathcal{V} = \mathcal{N}(\mathcal{V}) - \mathcal{W} - (\Psi *_r \rho_0(x)\mathcal{V} - \Psi *_r (\rho_0 \mathcal{V})(x)), \\
\partial_t F + \partial_w (\mathcal{A}(\mathcal{V}, w)F) = 0, \\
\rho_0(x)\mathcal{W} = \int_{\mathbb{R}} wF \, dw.
\end{cases} \tag{1}$$

1. Crevat, Faye, Filbet (19)

Concentration's profile

What is the profile of concentration?

Concentration with Gaussian profile

Concentration with triangular profile

Here are plots of

$$y = \frac{1}{\sqrt{\epsilon}} g\left(\frac{v}{\sqrt{\epsilon}}\right),\,$$

for $\sqrt{\epsilon}=1;0.7;0.5$ and g a gaussian profile (fig. 1) and triangular profile (fig. 2).

Formal derivation of the profile

ullet It is driven by diffusion term with respect to the voltage variable v

$$\partial_t f^{\epsilon} + \nabla_{(v,w)} \cdot \left[\begin{pmatrix} N(v) - w - \mathcal{K}_{\Psi}(f^{\epsilon}) \\ A(v,w) \end{pmatrix} f^{\epsilon} \right] = \partial_v \left[\frac{\rho_0^{\epsilon}}{\epsilon} (v - \mathcal{V}^{\epsilon}) f^{\epsilon} + \partial_v f^{\epsilon} \right],$$

• f^{ϵ} converges to the local equilibrium :

$$f^{\epsilon}(t, x, v, w) \underset{\epsilon \to 0}{\sim} \mathcal{M}_{\rho_{\mathbf{0}}^{\epsilon}/\epsilon}(v - \mathcal{V}^{\epsilon}) \otimes F^{\epsilon}(t, x, w),$$

$$\text{where } \mathcal{M}_{\rho_0^\epsilon/\epsilon}\big(v-\mathcal{V}^\epsilon\big) = \sqrt{\frac{\rho_0^\epsilon}{2\pi\epsilon}} \exp\bigg(-\frac{\rho_0^\epsilon}{2\epsilon}\big(v-\mathcal{V}^\epsilon\big)^2\bigg).$$

Goal

Rigorously prove that the profile is Gaussian with quantitative estimates.

Hamilton-Jacobi approach

Hopf-Cole transform of f^{ϵ}

ullet Consider the Hopf-Cole transform 2 ϕ^ϵ of f^ϵ

$$f^{\epsilon}(t, x, v, w) = \sqrt{\frac{\rho_0}{2\pi\epsilon}} \, \exp\left(\frac{1}{\epsilon} \, \phi^{\epsilon}(t, x, v, w)\right).$$

We prove

Theorem (E. Bouin and A.B.³)

Suppose that in $L^{\infty}_{loc}(K \times \mathbb{R}^2)$

$$\phi_0^{\epsilon}(x, v, w) \underset{\epsilon \to 0}{=} -\frac{\rho_0(x)}{2} |v - \mathcal{V}_0(x)|^2 + O(\epsilon),$$

Then it holds in $L^{\infty}_{loc}(\mathbb{R}^+ \times K \times \mathbb{R}^2)$

$$\phi^{\epsilon}(t,x,v,w) \underset{\epsilon \to 0}{=} -\frac{\rho_{0}(x)}{2} |v - \mathcal{V}(t,x)|^{2} + \frac{\mathcal{O}(\epsilon)^{4}}{2}.$$

- 2. Barles, Mirrahimi, Perthame (09)
- 3. In preparation
- 4. Mirrahimi, Roquejoffre (15)

Strategy

Strategy: we write

$$\phi^{\epsilon}(t,x,v,w) = -\frac{\rho_0^{\epsilon}}{2} |v - \mathcal{V}^{\epsilon}(t,x)|^2 + \epsilon \phi_1^{\epsilon}(t,x,v,w).$$

The correction ϕ_1^{ϵ} solves

$$H_1^{\epsilon}[\phi_1^{\epsilon}] + \frac{1}{\epsilon}J_1^{\epsilon}[\phi_1^{\epsilon}] = 0.$$

We look for sub/super-solution for the operator $H_1^{\epsilon}+\frac{1}{\epsilon}J_1^{\epsilon}$ under the form $\phi_-=\phi_1-\phi$, where $J_1^{\epsilon}[\phi_1]=0$ then apply a comparison principle.

11/18

11

Kinetic approach

Formal derivation

ullet We consider a re-scaled version g^ϵ of f^ϵ

$$f^{\epsilon}(t,x,v,w) = \frac{1}{\theta^{\epsilon}} g^{\epsilon} \left(t,x,\frac{v-\mathcal{V}^{\epsilon}}{\theta^{\epsilon}},w-\mathcal{W}^{\epsilon}\right).$$

Suppose $\theta^{\epsilon} = \sqrt{\epsilon}$. Changing variables in the equation on f^{ϵ} it yields

Equation on the profile

$$\partial_t g^{\epsilon} + \nabla_{(v,w)} \cdot [b_0^{\epsilon} g^{\epsilon}] = \frac{1}{\epsilon} \partial_v [\rho_0^{\epsilon} v g^{\epsilon} + \partial_v g^{\epsilon}],$$

where b_0^{ϵ} depends on $1/\sqrt{\epsilon}$ and f^{ϵ} . Therefore, we expect

$$g^{\epsilon}(t, x, v, w) \underset{\epsilon \to 0}{=} \mathcal{M}_{\rho_{\mathbf{0}}^{\epsilon}}(v) \otimes G^{\epsilon}(t, x, w) + O\left(\sqrt{\epsilon}\right).$$

Strategy

proving that g^{ϵ} converges to $\mathcal{M}_{\rho_0} \otimes G$.

Weak convergence result

Weak convergence result

Theorem (F. Filbet and A.B. ⁵)

Under suitable assumptions on f_0^ϵ , there exists C>0 such that

$$\sup_{x \in K} W_2\left(\frac{1}{\rho_0^{\epsilon}} f^{\epsilon}, \frac{1}{\rho_0} \mathcal{M}_{\rho_0/\epsilon}\left(\cdot - \mathcal{V}\right) \otimes F\right) \leq C\left(e^{Ct} \epsilon + e^{-\rho_0^{\epsilon} t/\epsilon}\right),$$

for all $\epsilon > 0$ and $t \geq 0$.

Here, W_2 stands for the Wasserstein distance of order 2.

Key arguments of the proof:

- Uniform moment estimates.
- Analytic coupling method 6 in order to estimate the Wasserstein distance between g^ϵ and $\mathcal{M}\otimes G$ (G satisfies (1) after changing variables) .
- Concentration phenomena in Fitzhugh-Nagumo's equations: A mesoscopic approach, arXiv:2201.02363
- 6. Fournier, Perthame (20).

Strong convergence results

Towards strong convergence : time dependent θ^{ϵ}

• We consider a re-scaled version g^{ϵ} of f^{ϵ}

$$f^{\epsilon}(t, x, v, w) = \frac{1}{\theta^{\epsilon}} g^{\epsilon} \left(t, x, \frac{v - \mathcal{V}^{\epsilon}}{\theta^{\epsilon}}, w - \mathcal{W}^{\epsilon} \right).$$

• $\theta^{\epsilon} = \sqrt{\epsilon}$ induces that at time t = 0, it holds

$$f_0^\epsilon(x,v,w) \,=\, \frac{1}{\sqrt{\epsilon}} \,\, g_0^\epsilon \left(x,\frac{v-\mathcal{V}_0^\epsilon}{\sqrt{\epsilon}},w-\mathcal{W}_0^\epsilon\right) \,.$$

• Therefore, we impose $\theta^{\epsilon}(t=0)=1$. The only suitable choice is

$$\theta^{\epsilon}(t,x) = \sqrt{\epsilon} \left[1 + \underbrace{e^{-2\rho_{0}^{\epsilon}(x)t/\epsilon} \left(\epsilon^{-1} - 1\right)}_{\text{exponentially decaying remainder}} \right]^{\frac{1}{2}}.$$

The equation on g^{ϵ} rewrites

$$\partial_t g^\epsilon \, + \,
abla_{(v,w)} \cdot [\, \mathsf{b}_0^\epsilon \, g^\epsilon \,] = rac{1}{| heta^\epsilon|^2} \partial_v \, [\,
ho_0^\epsilon \, v \, g^\epsilon + \partial_v g^\epsilon \,] \, .$$

14/18

14

Strong convergence result

Theorem (A.B.⁷)

Under suitable assumptions on f_0^{ϵ} , there exists C>0 such that

$$\int_0^t \|f^{\epsilon} - f\|_{L^{\infty}_x L^{\mathbf{1}}_{(v,w)}}(s) \, ds \leq C \, e^{C \, t} \, \sqrt{\epsilon} \; ,$$

for all $\epsilon > 0$ and $t \geq 0$, where the limit f is given by

$$f(t, x, v, w) = \mathcal{M}_{\rho_{\mathbf{0}} \mid \theta^{\epsilon} \mid^{-2}} (v - \mathcal{V}) \otimes F,$$

where (V, F) solves (1).

Large coupling in a FitzHug-Nagumo neural network : quantitative and strong convergence results, arXiv: 2203.14558v2.

Key arguments

- Relative entropy estimate yields $g^\epsilon \underset{\epsilon \to 0}{\sim} \mathcal{M}_{\rho_0^\epsilon} \otimes G^\epsilon + \mathcal{O}(\sqrt{\epsilon})$ in L^1 .
- ullet Proving that G^{ϵ} converges towards G:
 - (i) We work on the re-scaled version H^{ϵ}

$$H^{\epsilon} = \int_{\mathbb{R}} g^{\epsilon} \left(t, x, v, w - \epsilon^{3/2} v \right) dv.$$

- (ii) L^1 -equicontinuity estimates for g^{ϵ} yield $H^{\epsilon} = G^{\epsilon} + O(\sqrt{\epsilon})$ in L^1 .
- (iii) Then we prove $H^{\epsilon} = G + O(\sqrt{\epsilon})$ in L^{1} .

16/18

16

H^{ϵ} converges towards \overline{G} : simplified example

• We consider the diffusive scaling for Fokker-Planck equation

$$\partial_t g^{\epsilon} + rac{1}{\epsilon} v \cdot
abla_{\mathsf{X}} g^{\epsilon} = rac{1}{\epsilon^2}
abla_{\mathsf{V}} \cdot \left[v g^{\epsilon} +
abla_{\mathsf{V}} g^{\epsilon}
ight] \, ,$$

and we prove

$$G^{\epsilon} = \int_{\mathbb{R}} g^{\epsilon} dv \xrightarrow[\epsilon \to 0]{} G$$
, where $\partial_t G = \Delta_{\mathsf{x}} G$.

• Define

$$H^{\epsilon}(t,x) = \int_{\mathbb{D}} g^{\epsilon}(t,x-\epsilon v,v) dv$$
.

H^ε SOLVES the limiting equation

$$\partial_t H^{\epsilon} = \Delta_{\mathsf{x}} H^{\epsilon}$$
.

ullet Therefore, it is sufficient to prove $H^\epsilon \sim G^\epsilon$ (i.e. equicontinuity for g^ϵ).

Conclusion and perspectives

Conclusion:

- L^{∞} convergence estimates following a Hamilton-Jacobi approach.
- Weak convergence result with the (formal) optimal convergence rate.
- L¹ convergence result with deteriorated convergence rate.
- We also prove a convergence result in (inverse Gaussian) weighted L^2 spaces and recover the optimal rate by propagating regularity.