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Overview

We consider that neural networks are particle systems. It is possible to
describe them through 3 distinct scales :

Macroscopic scale Mesoscopic scale Microscopic scale

GOAL :

Derive information at the macroscopic scale from the mesoscopic scale
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Microscopic scale and mean
field limit



Behavior of a neuron

• We focus on the dynamics of the voltage through the membrane of a
neuron. Experiments showcase 2 main features

Hodgkin & Huxley, ’52.

(i) Delay when responding to an external
input.

(ii) Self-regulation.

• Hodgkin & Huxley obtained a precise but mathematically complicated
model.
• We will use a simplified version that captures its main features :
FitzHugh-Nagumo’s model for a neuron
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FitzHugh-Nagumo’s neuron

A neuron i is modeled by (v i
t ,w

i
t ) ∈ R2 (voltage & delay){

dv i
t =

(
N(v i

t )− w i
t + Iext

)
dt +

√
2dBt ,

dw i
t = A

(
v i
t ,w

i
t

)
dt,

• A is an affinity while N is non-linear, typically N(v) = v−v3.
• Iext is the current resulting from interaction with other neurons

Iext = −1
n

n∑
j=1

Φ(xi , xj)(v
i − v j),

where xi ∈ K ⊂ Rd is the location of neuron i .
• We obtain the following microscopic model, where 1 ≤ i ≤ N

dv i
t =

N(v i
t )− w i

t −
1
n

n∑
j=1

Φ(xi , xj)(v
i
t − v j

t )

 dt +
√

2dB i
t ,

dw i
t = A(v i

t ,w
i
t )dt.

(1)
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Mean field limit

It was proved that in the mean field limit N → +∞ the microscopic
system is described by

FitzHugh-Nagumo’s mean field equation ∂t f = −∂v ((N(v)− w −KΦ(f )) f )− ∂w (A(v ,w)f ) + ∂2
v f ,

f (0, ·) = f0,

where f (t, x , v ,w) is the probability distribution of finding neurons with a
potential v ∈ R, adaptation variable w ∈ R, at time t ≥ 0 and position
x ∈ K within the network, and KΦ(f ) is the non-local term due to
interactions between neurons

KΦ(f )(x , v) =

∫
K×R2

Φ(x , x ′)(v − v ′)f (x ′, v ′,w ′)dx ′dv ′dw ′.
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Mean field limit
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Concentration phenomena



Modeling assumptions

We decompose the interaction kernel Φ as follows

Φ(x , x ′) = Ψ(x , x ′) +
1
ϵ
δ0(x − x ′),

where
- Ψ is "more regular" and accounts for Weak/Long range interactions,
- dirac mass δ0 accounts for Strong/Local interactions with strength
ϵ > 0.

GOAL :

Study the system in the regime of Strong/Local interactions, that is
when ϵ → 0.

References :
Bressloff (03), Luçon/Stannat (14).
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Strong interactions & concentration phenomenon

• With this ansatz the equation rewrites

∂t f
ϵ =− ∂v

((
N(v)− w − ρϵ0

ϵ
(v − Vϵ)−KΨ(f

ϵ)

)
f ϵ
)

(2)

− ∂w (A(v ,w)f ϵ) + ∂2
v f

ϵ,

where

ρϵ0(x) =

∫
R2

f ϵdvdw and Vϵ(t, x) =
1
ρϵ0

∫
R2

vf ϵdvdw .

• Multiplying the equation by |v − Vϵ|2 and integrating yields∫
R2

|v − Vϵ(t)|2 f ϵdvdw =
ϵ→0

O(ϵ).

Hence, f ϵ is expected to concentrate around Vϵ

f ϵ(t, v ,w) =
ϵ→0

δVϵ(t)(v)⊗ F ϵ(t,w) +
√
ϵ,

where F ϵ(t,w) =

∫
R
f ϵ(t, v ,w)dv , in some probability space.
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Concentration’s profile



Concentration’s profile

Our goal is to determine the profile of this concentration.

Concentration with Gaussian profile Concentration with triangular profile

Here are plots of

y =
1√
ϵ
g

(
v√
ϵ

)
,

for
√
ϵ = 1; 0.7; 0.5 and g a gaussian profile (fig. 1) and triangular profile

(fig. 2).
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Goal of the presentation

• Consider the following re-scaled version g ϵ of f ϵ :

f ϵ(t, v ,w) =
1
ϵα

g ϵ

(
t,
v − Vϵ(t)

ϵα
,w −Wϵ(t)

)
, (3)

where α > 0 needs to be determined, and

Wϵ =
1
ρϵ0

∫
R2

wf ϵdvdw .

• GOAL :

proving that g ϵ converges and compute the limit.
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Formal derivation of the concentration’s profile

We obtain the equation on g ϵ changing variables in the equation on f ϵ

∂tg
ϵ = − 1

ϵα
∂u [(N(Vϵ + ϵαu)− N(Vϵ)− (Ψ ∗r ρϵ0) ϵαu − ω − E) g ϵ]

−∂ω [A0 (ϵ
αu, ω) g ϵ] +

1
ϵ2α

∂u
(
ρϵ0ϵ

2α−1ug ϵ + ∂ug
ϵ
)
,

where A0 = A− c and E is an error term.

• It is natural to take α = 1/2. Indeed, we obtain

∂tg
ϵ = − 1√

ϵ
∂u

[(
N(Vϵ +

√
ϵu)− N(Vϵ)− (Ψ ∗r ρϵ0)

√
ϵu − ω − E

)
g ϵ
]

−∂ω [A0 (
√
ϵu, ω) g ϵ] +

1
ϵ
∂u (ρ

ϵ
0ug

ϵ + ∂ug
ϵ).

(4)
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Formal derivation

• Considering the stiffer term in the former equation, we expect

g ϵ(t, x , u, ω) =
ϵ→0

Mρϵ
0
(u)⊗ G ϵ(t, x , ω) + O

(√
ϵ
)
,

where Mρϵ
0
(u) =

√
ρϵ0
2π

exp

(
−ρϵ0u

2

2

)
and G ϵ(t, x , ω) =

∫
R
g ϵdu.

• Furthermore, since G ϵ solves

∂tG
ϵ − b∂ω (xG ϵ) = −a

√
ϵ∂ω

(∫
R
ug ϵdu

)
, (5)

and ∫
R
ug ϵdu =

ϵ→0

∫
R
uMρϵ

0
⊗ G ϵdu + O(

√
ϵ) = O(

√
ϵ),

it is expected that

G ϵ(t, x , ω) =
ϵ→0

G (t, x , ω) + O (ϵ) ,

where G solves
∂tG − b∂ω (ωG ) = 0.
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Main result



Main result

Coming back to the solution f ϵ to the mean field equation, this yields

Théorème

Under some assumptions on f ϵ0 , there exists a constant C > 0 such that

sup
x∈K

W2

(
1
ρϵ0

f ϵ,
1
ρ0

Mρ0/ϵ (· − V)⊗ F

)
≤ CeCtϵ,

for all ϵ > 0 and t ≥ 0, where the macroscopic system (V,F ) solves the
following coupled reaction-diffusion/transport equation

∂tV = N(V)−W − (Ψ ∗r ρ0(x)V −Ψ ∗r (ρ0V)(x)) ,

∂tF + ∂w (A(V,w)F ) = 0,

ρ0(x)W =

∫
R
wFdw .

(6)

Here, W2 stands for the Wasserstein distance of order 2.
13

13/16



Key arguments & Comments

• Since W2(Mρ0/ϵ, δ0) =
√
ϵ/ρ0, we recover

sup
x∈K

W2

(
1
ρϵ0

f ϵ,
1
ρ0

δV ⊗ F

)
∼

ϵ→0

√
ϵ,

Key argument for the proof :

• Uniform estimates (in time and ϵ) for moments and some relative
energy using confining properties of A and N (uniformity in time) and

concentrating properties of the stiffer term −1
ϵ
(v − Vϵ) (uniformity in ϵ).

• Coupling method in order to estimate the Wasserstein distance between
g ϵ and M ⊗ G

References :
Fournier/Perthame (2019).

14

14/16



Current work

• Obtaining similar results following a Hamilton-Jacobi method.

• Obtaining a strong convergence result.

• Numerical analysis of the model.

15

15/16



Thanks

Thank you for your attention !
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