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Introduction



Microscopic description

FitzHugh-Nagumo neural network of size n

For i between 1 and n :
dv i

t =

N(v i
t )− w i

t −
1
n

n∑
j=1

Φ(xi , xj)(v
i
t − v j

t )

 dt +
√

2dB i
t ,

dw i
t = A(v i

t ,w
i
t )dt.

• v i
t represents the tension of neuron i at time t.

• w i
t is an adaptation variable added for modeling reasons.

• N (resp. A) is a non-linear drift (resp. an affinity) with confining
property.
• Brownian motion B i

t takes into account random fluctuation of the
voltage.
• Neurons interact following Ohm’s law. The conductance Φ(xi , xj)

between neuron i and j depend on their spatial location xi and xj .
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Mesoscopic description : n → +∞

FitzHugh-Nagumo’s mean-field equation

∂t f + div(v ,w)

N(v)− w −KΦ(f )

A(v ,w)

 f

 − ∂2
v f = 0,

• f (t, x , v ,w) is the probability of finding neurons at time t ≥ 0 and
position x ∈ K , with potential v ∈ R and adaptation variable w ∈ R.
• KΦ(f ) is the non-local term due to interactions between neurons

KΦ(f )(x , v) =

∫
K×R2

Φ(x , x ′)(v − v ′)f (x ′, v ′,w ′)dx ′dv ′dw ′.

We decompose the interaction kernel Φ as follows

Φ(x , x ′) = Ψ(x , x ′)︸ ︷︷ ︸
weak-long range interactions

+
1
ϵ
δ0(x − x ′)︸ ︷︷ ︸

strong-short range interactions

.
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Regime of strong interactions

Weak-Long / Strong-Short decomposition

Φ(x , x ′) = Ψ(x , x ′) +
1
ϵ
δ0(x − x ′) .

The mean-field equation rewrites

∂t f
ϵ + div(v ,w)

N(v)− w −KΨ(f
ϵ)

A(v ,w)

 f ϵ

− ∂2
v f

ϵ =
ρϵ0
ϵ
∂v [(v − Vϵ)f ϵ ] ,

where

ρϵ0(x) =

∫
R2

f ϵdvdw and Vϵ(t, x) =
1
ρϵ0

∫
R2

vf ϵdvdw .

Main goal
Analysis of the regime of Strong/Local interactions, that is when ϵ → 0.
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Formal derivation



Strong interactions and concentration phenomenon

∂t f
ϵ + div(v ,w)

N(v)− w −KΨ(f
ϵ)

A(v ,w)

 f ϵ

− ∂2
v f

ϵ =
ρϵ0
ϵ
∂v [(v − Vϵ)f ϵ ] ,

• Multiplying the equation by |v − Vϵ|2 and integrating yields

W 2
2

(
1
ρϵ0

f ϵ,
1
ρϵ0

δVϵ ⊗
∫

R
f ϵ dv

)
=

∫
R2

|v − Vϵ|2 f ϵdvdw =
ϵ→0

O(ϵ) ,

where W2 is the Wasserstein distance of order 2. In the end, we obtain 1

f ϵ(t, x , v ,w) =
ϵ→0

δV(t,x)(v)⊗ F (t, x ,w) + O(
√
ϵ) ,

where (V,F ) satisfies
∂tV = N(V)−W − (Ψ ∗r ρ0(x)V −Ψ ∗r (ρ0V)(x)) ,

∂tF + ∂w (A(V,w)F ) = 0,

ρ0(x)W =

∫
R
wF dw .

(1)

1. Crevat, Faye, Filbet (19), Jabin, Rey (17), Kang, Vasseur (15)5
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Concentration profile

• To refine our description, we consider a re-scaled version g ϵ of f ϵ 2 :

f ϵ(t, x , v ,w) =
1
θϵ

g ϵ

(
t, x ,

v − Vϵ

θϵ
,w −Wϵ

)
,

where θϵ > 0 needs to be determined and

Wϵ =
1
ρϵ0

∫
R2

wf ϵdvdw .

Main goal
proving that g ϵ converges and compute the limit.

2. Mouhot, Mischler (06), Rey (12)
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Formal derivation

Suppose θϵ = ϵα. Changing variables in the equation of f ϵ it yields

∂tg
ϵ + div(v ,w) [ bϵ0 g

ϵ ] =
1
ϵ2α

∂v
(
ρϵ0ϵ

2α−1vg ϵ + ∂vg
ϵ
)
,

Therefore θϵ =
√
ϵ (i.e. α = 1/2) is the only suitable choice

Equation on the profile

∂tg
ϵ + div(v ,w) [ bϵ0 g

ϵ ] =
1
ϵ
∂v [ ρ

ϵ
0 v g

ϵ + ∂vg
ϵ ] ,

where bϵ0 depends on 1/
√
ϵ and f ϵ. Therefore, we expect

g ϵ(t, x , v ,w) =
ϵ→0

Mρϵ
0
(v)⊗ G ϵ(t, x ,w) + O

(√
ϵ
)
.
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Weak convergence result



Weak convergence result

Theorem (F. Filbet and A.B. 3)

Under suitable assumptions on f ϵ0 , there exists C > 0 such that

sup
x∈K

W2

(
1
ρϵ0

f ϵ,
1
ρ0

Mρ0/ϵ (· − V)⊗ F

)
≤ C

(
eCtϵ+ e−ρϵ

0 t/ϵ
)
,

for all ϵ > 0 and t ≥ 0.

Here, W2 stands for the Wasserstein distance of order 2.
Key arguments of the proof :
• Uniform moment estimates.
• Analytic coupling method 4 in order to estimate the Wasserstein
distance between g ϵ and M⊗ G (G satisfies (1) after changing
variables) .

3. Concentration phenomena in Fitzhugh-Nagumo’s equations : A mesoscopic
approach, arXiv :2201.02363

4. Fournier, Perthame (20).
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Strong convergence results



Towards strong convergence : time dependent θϵ

• θϵ =
√
ϵ induces that at time t = 0, it holds

f ϵ0 (x , v ,w) =
1√
ϵ
g ϵ
0

(
x ,

v − Vϵ
0√

ϵ
,w −Wϵ

0

)
.

• Therefore, we impose θϵ(t = 0) = 1. The only suitable choice is

θϵ(t, x) =
√
ϵ

 1 + e− 2 ρϵ
0(x) t / ϵ

(
ϵ−1 − 1

)︸ ︷︷ ︸
exponentially decaying remainder


1
2

.

The equation on g ϵ rewrites

∂tg
ϵ + div(v ,w) [ bϵ0 g

ϵ ] =
1

|θϵ|2
∂v [ ρ

ϵ
0 v g

ϵ + ∂vg
ϵ ] ,
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Strong convergence result

Theorem (A.B. 5 )
Under suitable assumptions on f ϵ0 , there exists C > 0 such that∫ t

0
∥ f ϵ − f ∥L∞

x L1
(v,w)

(s) ds ≤ C eC t
√
ϵ ,

for all ϵ > 0 and t ≥ 0, where the limit f is given by

f (t, x , v ,w) = Mρ0 |θϵ|−2 (v − V)⊗ F ,

where (V,F ) solves (1).

5. Large coupling in a FitzHug-Nagumo neural network : quantitative and strong
convergence results (in preparation).
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Key arguments

• Relative entropy estimate yields g ϵ ∼
ϵ→0

Mρϵ
0
⊗ G ϵ + O(

√
ϵ) in L1 .

• Proving that G ϵ converges towards G :

(i) We work on the re-scaled version Hϵ

Hϵ =

∫
R
g ϵ

(
t, x , v ,w − ϵ3/2v

)
dv .

(ii) L1-equicontinuity estimates for g ϵ yield Hϵ =
ϵ→0

G ϵ + O(
√
ϵ) in L1.

(iii) Then we prove Hϵ =
ϵ→0

G + O(
√
ϵ) in L1.
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Hϵ converges towards G : simplified example

• We consider the diffusive scaling for Fokker-Planck equation

∂tg
ϵ +

1
ϵ
v · ∇xg

ϵ =
1
ϵ2

divv [vg
ϵ +∇vg

ϵ] ,

and we prove

G ϵ =

∫
R
g ϵdv −→

ϵ→0
G , where ∂tG = ∆xG .

• Define
Hϵ(t, x) =

∫
R
g ϵ(t, x + ϵv , v)dv .

• Hϵ SOLVES the limiting equation

∂tH
ϵ = ∆xH

ϵ .

• Therefore, it is sufficient to prove Hϵ ∼ G ϵ (i.e. equicontinuity for g ϵ).
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Conclusion and perspectives

Conclusion :

• Weak convergence result with the (formal) optimal convergence rate.
• L1 convergence result with deteriorated convergence rate.
• We also prove a convergence result in (inverse Gaussian) weighted L2

spaces and recover the optimal rate by propagating regularity.

Perspective :

• Obtaining similar results (explicit convergence rates) following a
Hamilton-Jacobi approach 6.

Thank you for your attention !
6. Quininao, Touboul (20)
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