Macroscopic limit of the
 Vlasov-Poisson-Fokker-Planck model

Alain Blaustein
February 7, 2023

Mathematical challenges in fluid dynamics and kinetic theory

The VPFP model

- We consider a kinetic description of electrons subjected to:
(a) electric field ;
(b) collisions with an ion background.

Vlasov-Fokker-Planck equation

$$
\left\{\begin{array}{l}
\epsilon \partial_{t} f^{\epsilon}+\underbrace{v \cdot \nabla_{x} f^{\epsilon}}_{\text {free transport }}+\underbrace{E^{\epsilon} \cdot \nabla_{v} f^{\epsilon}}_{\text {electric field }}=\frac{1}{\epsilon} \underbrace{\nabla_{v} \cdot\left[v f^{\epsilon}+\nabla_{v} f^{\epsilon}\right]}_{\text {collisions }} \\
E^{\epsilon}=-\nabla_{x} \phi^{\epsilon}, \quad-\Delta_{x} \phi^{\epsilon}=\rho^{\epsilon}-\rho_{i}, \quad \rho^{\epsilon}=\int_{\mathbb{R}^{d}} f^{\epsilon} d v
\end{array}\right.
$$

- $f^{\epsilon}(t, x, v)$: density of electrons at $(t, x, v) \in \mathbb{R}^{+} \times \mathbb{T}^{d} \times \mathbb{R}^{d}$;
- $\rho_{i}(x)$: density of ions at position $x \in \mathbb{T}^{d}$.
- GOAL: analysis of the fluid regime $\epsilon \rightarrow 0$.

Formal argument: convergence towards local equilibrium

$$
\epsilon \partial_{t} f^{\epsilon}+v \cdot \nabla_{x} f^{\epsilon}+E^{\epsilon} \cdot \nabla_{v} f^{\epsilon}=\frac{1}{\epsilon} \nabla_{v} \cdot\left[v f^{\epsilon}+\nabla_{v} f^{\epsilon}\right]
$$

- Leading order in ϵ : we expect

$$
\nabla_{v} \cdot\left[v f^{\epsilon}+\nabla_{v} f^{\epsilon}\right] \underset{\epsilon \rightarrow 0}{\sim} 0
$$

- it holds

$$
\nabla_{v} \cdot\left[v f^{\epsilon}+\nabla_{v} f^{\epsilon}\right]=\nabla_{v} \cdot\left(\mathcal{M} \nabla_{v}\left(\frac{f^{\epsilon}}{\mathcal{M}}\right)\right)
$$

where \mathcal{M} is the standard Maxwellian distribution:

$$
\mathcal{M}(v)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2}|v|^{2}\right)
$$

Therefore, we deduce

$$
f^{\epsilon}(t, x, v) \underset{\epsilon \rightarrow 0}{\sim} \rho^{\epsilon}(t, x) \mathcal{M}(v) \text { with } \rho^{\epsilon}(t, x)=\int_{\mathbb{R}^{d}} f^{\epsilon}(t, x, v) \mathrm{d} x
$$

- Next step : finding the limit of ρ^{ϵ}

Formal argument: convergence of ρ^{ϵ}

- Instead of $\rho^{\epsilon}(t, x)=\int_{\mathbb{R}^{d}} f^{\epsilon}(t, x, v) \mathrm{d} v$, we consider

$$
\pi^{\epsilon}(t, x)=\int_{\mathbb{R}^{d}} f^{\epsilon}(t, x-\epsilon v, v) \mathrm{d} v
$$

which solves

$$
\partial_{t} \pi^{\epsilon}-\nabla_{x} \cdot\left(\int_{\mathbb{R}^{d}} E^{\epsilon} f^{\epsilon}(t, x-\epsilon v, v) \mathrm{d} v+\nabla_{x} \pi^{\epsilon}\right)=0
$$

- Therefore, we expect $f^{\epsilon}(t, x, v) \underset{\epsilon \rightarrow 0}{\longrightarrow} \rho(t, x) \mathcal{M}(v)$ with

Repulsive Keller-Segel equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\nabla_{x} \cdot\left[\rho E-\nabla_{x} \rho\right]=0 \\
E=-\nabla_{x} \phi, \quad-\Delta_{x} \phi=\rho-\rho_{i}
\end{array}\right.
$$

State of art

Bibliography:

1) Compactness methods

- F. Poupaud, J. Soler; Math. Models Methods Appl. Sci.; 2000
- N. El Ghani, N. Masmoudi; IAENG Int. J. Appl. Math.; 2010
- M. Herda; J. Differential Equations; 2016

2) Perturbative methods

- F. Hérau, L. Thomann; J. Funct. Anal; 2016
- M. Herda, M. Rodrigues; J. Stat. Phys.; 2018
- L. Addala, J. Dolbeault, X. Li, M. L. Tayeb; J. Stat. Phys.; 2021

Goal:

Quantitative result in non-perturbative settings in any dimension d.

Main result

Theorem (22')

Supposing f_{0}^{ϵ} in weighted L^{p} space, it holds

$$
\left\|f^{\epsilon}-\rho \mathcal{M}\right\|_{L^{2}} \lesssim \epsilon^{\beta} .
$$

on bounded time intervals $\left[0, T^{\epsilon}\right]$, with (explicit) T^{ϵ} which verifies

$$
T^{\epsilon} \underset{\epsilon \rightarrow 0}{\longrightarrow}+\infty
$$

and where

$$
\beta=\frac{p-d}{p-1} .
$$

Main difficulty: appropriate functional framework

$$
\epsilon \partial_{t} f^{\epsilon}+v \cdot \nabla_{x} f^{\epsilon}+E^{\epsilon} \cdot \nabla_{v} f^{\epsilon}=\frac{1}{\epsilon} \nabla_{v} \cdot\left[v f^{\epsilon}+\nabla_{v} f^{\epsilon}\right]
$$

We should find a norm ||| $\cdot||\mid$ such that:
(i) $|\| \cdot||\mid$ is dissipated by the leading order in ϵ, that is

$$
\epsilon \partial_{t} g=\frac{1}{\epsilon} \nabla_{v} \cdot\left[v g+\nabla_{v} g\right] \Longrightarrow \epsilon^{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\||g|\| \leq 0
$$

\rightarrow verified by : $\int_{\mathbb{R}^{d}} \varphi\left(\frac{g}{\mathcal{M}}\right) \mathcal{M} \mathrm{d} v$, for all convex φ
(ii) ||| $\cdot\left|\left|\mid\right.\right.$ controls $E^{\epsilon}:$ since $\nabla_{x} \cdot E^{\epsilon}=\rho^{\epsilon}$, for all $p>d$ we have

$$
W^{1, p}\left(\mathbb{T}^{d}\right) \hookrightarrow L^{\infty}\left(\mathbb{T}^{d}\right) \Longrightarrow\left\|E^{\epsilon}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)} \leq\left\|\rho^{\epsilon}\right\|_{L^{p}\left(\mathbb{T}^{d}\right)}
$$

$\rightarrow \underline{\text { Poupaud \& Soler(00') }}$ proposed $\left.\left|\| f^{\epsilon}\right|\right|_{p} ^{p}=\int_{\mathbb{R}^{d}}\left|\frac{f^{\epsilon}}{\mathcal{M}}\right|^{p} \mathcal{M} \mathrm{~d} v \mathrm{~d} x$

Key step: estimate of the $\left|\left||\cdot| \|_{p}\right.\right.$-norm

- Computations yield

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|f^{\epsilon}\right\|\left\|_{p}^{p} \leq C\right\| E^{\epsilon}\left\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}^{2}\right\|\left\|f^{\epsilon}\right\| \|_{p}^{p}
$$

for C independent of ϵ. Poupaud \& Soler deduce

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|f^{\epsilon}\right\|\left\|_{p}^{p} \leq C\right\| f^{\epsilon}\| \|_{p}^{p+2}
$$

which yields $\left\|\mid f^{\epsilon}(t)\right\| \|_{p}<+\infty$ if $t \lesssim\left\|\left\|f_{0}^{\epsilon}\right\|\right\|_{p}^{-2}$ (blows up in finite time).

Key idea

- consider $\pi^{\epsilon}(t, x)=\int_{\mathbb{R}^{d}} f^{\epsilon}(t, x-\epsilon v, v) \mathrm{d} v$ and $I^{\epsilon}(t, x)$ defined by

$$
I^{\epsilon}=-\nabla_{x} \psi^{\epsilon}, \quad-\Delta_{x} \psi^{\epsilon}=\pi^{\epsilon}-\rho_{i},
$$

and the following decomposition

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|\left\|f^{\epsilon}\right\|_{p}^{p}\right. & \leq C\left\|E^{\epsilon}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}^{2}\| \| f^{\epsilon} \|_{p}^{p} \\
& \leq C\left(\left\|E^{\epsilon}-I^{\epsilon}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}^{2}+\left\|I^{\epsilon}-E\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}^{2}+\|E\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}^{2}\right)\left\|f^{\epsilon}\right\| \|_{p}^{p} .
\end{aligned}
$$

- We focus on $\left\|E^{\epsilon}-I^{\epsilon}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)}$. It holds

$$
\left(E^{\epsilon}-I^{\epsilon}\right)(t, x)=\nabla_{x} \Delta_{x}^{-1} \int_{\mathbb{R}^{d}} f^{\epsilon}(t, x-\epsilon v, v)-f^{\epsilon}(t, x, v) \mathrm{d} v .
$$

Therefore, for all $p>d$ it holds (with $\gamma=1 /(p-d)$)

$$
W^{1, p}\left(\mathbb{T}^{d}\right) \hookrightarrow \mathcal{C}^{\gamma}\left(\mathbb{T}^{d}\right) \Longrightarrow\left\|E^{\epsilon}-I^{\epsilon}\right\|_{L^{\infty}\left(\mathbb{T}^{d}\right)} \leq C \epsilon^{\gamma}\| \| f^{\epsilon}\| \|_{p} .
$$

In the end we deduce : $\frac{\mathrm{d}}{\mathrm{d} t}\left\|f^{\epsilon}\right\|\left\|_{p}^{p} \leq C \epsilon^{\gamma}\right\| f^{\epsilon}\| \|_{p}^{p+2}$.

Perspectives

Some open problems:

- derive the VPFP model as the mean-field limit of a particle system uniformly in the fluid limit ${ }^{1}$;
- quantitative long-time behavior of the non-linear model in non-perturbative setting;
- including collision operators closer to physics (ex: Landau²)

[^0]
[^0]: ${ }^{1}$ D. Bresch, P.-E. Jabin, Z. Wang (19)
 ${ }^{2}$ S. Chaturvedi, J. Luk, T. Nguyen

