Macroscopic limit of the Vlasov-Poisson-Fokker-Planck model

Alain Blaustein

February 7, 2023

Mathematical challenges in fluid dynamics and kinetic theory

The VPFP model

- We consider a **kinetic description** of electrons subjected to:
 - (a) electric field; (b) collisions with an ion background.

Vlasov-Fokker-Planck equation

$$\begin{cases} \epsilon \, \partial_t \, f^\epsilon + \underbrace{v \cdot \nabla_x \, f^\epsilon}_{\text{free transport}} + \underbrace{E^\epsilon \cdot \nabla_v \, f^\epsilon}_{\text{electric field}} = \frac{1}{\epsilon} \, \underbrace{\nabla_v \cdot \big[\, v \, f^\epsilon + \nabla_v \, f^\epsilon \big]}_{\text{collisions}}, \\ E^\epsilon = - \nabla_x \, \phi^\epsilon \, , \quad - \Delta_x \, \phi^\epsilon = \rho^\epsilon - \rho_i \, , \quad \rho^\epsilon = \int_{\mathbb{R}^d} f^\epsilon \, dv \, . \end{cases}$$

- $f^{\epsilon}(t, x, v)$: density of electrons at $(t, x, v) \in \mathbb{R}^+ \times \mathbb{T}^d \times \mathbb{R}^d$;
- $\rho_i(x)$: density of ions at position $x \in \mathbb{T}^d$.
- GOAL: analysis of the fluid regime $\epsilon \to 0$.

Formal argument: convergence towards local equilibrium

$$\epsilon \partial_t f^{\epsilon} + v \cdot \nabla_x f^{\epsilon} + E^{\epsilon} \cdot \nabla_v f^{\epsilon} = \frac{1}{\epsilon} \nabla_v \cdot [v f^{\epsilon} + \nabla_v f^{\epsilon}]$$

• Leading order in ϵ : we expect

$$\nabla_{\mathbf{v}} \cdot [\mathbf{v} f^{\epsilon} + \nabla_{\mathbf{v}} f^{\epsilon}] \underset{\epsilon \to 0}{\sim} 0$$

• it holds

$$\nabla_{\mathbf{v}} \cdot \left[\mathbf{v} \, f^{\epsilon} \, + \, \nabla_{\mathbf{v}} \, f^{\epsilon} \right] = \nabla_{\mathbf{v}} \cdot \left(\mathcal{M} \, \nabla_{\mathbf{v}} \left(\frac{f^{\epsilon}}{\mathcal{M}} \right) \right) \,,$$

where \mathcal{M} is the standard Maxwellian distribution:

$$\mathcal{M}(v) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}|v|^2\right).$$

Therefore, we deduce

$$f^{\epsilon}(t,x,v) \underset{\epsilon \to 0}{\sim} \rho^{\epsilon}(t,x) \mathcal{M}(v) \text{ with } \rho^{\epsilon}(t,x) = \int_{\mathbb{R}^d} f^{\epsilon}(t,x,v) \mathrm{d}x.$$

ullet Next step : finding the **limit of** ho^ϵ

Formal argument: convergence of ρ^{ϵ}

ullet Instead of $ho^\epsilon(t,x)=\int_{\mathbb{R}^d}f^\epsilon(t,x,v)\mathrm{d}v$, we consider

$$\pi^{\epsilon}(t,x) = \int_{\mathbb{R}^d} f^{\epsilon}(t,x-\epsilon v,v) dv,$$

which solves

$$\partial_t \pi^{\epsilon} - \nabla_x \cdot \left(\int_{\mathbb{R}^d} E^{\epsilon} f^{\epsilon} (t, x - \epsilon v, v) dv + \nabla_x \pi^{\epsilon} \right) = 0.$$

• Therefore, we expect $f^{\epsilon}(t,x,v) \underset{\epsilon \to 0}{\longrightarrow} \rho(t,x) \, \mathcal{M}(v)$ with

Repulsive Keller-Segel equation

$$\left\{ \begin{array}{l} \partial_t \, \rho + \nabla_x \cdot \left[\, \rho \, E - \nabla_x \, \rho \, \right] = 0 \, , \\ \\ E \, = \, - \nabla_x \, \phi \, , \quad - \Delta_x \, \phi \, = \, \rho - \rho_i \, . \end{array} \right.$$

State of art

Bibliography:

- 1) Compactness methods
- F. Poupaud, J. Soler; Math. Models Methods Appl. Sci.; 2000
- N. El Ghani, N. Masmoudi; IAENG Int. J. Appl. Math.; 2010
- M. Herda; J. Differential Equations; 2016
- 2) Perturbative methods
- F. Hérau, L. Thomann; J. Funct. Anal; 2016
- M. Herda, M. Rodrigues; J. Stat. Phys.; 2018
- L. Addala, J. Dolbeault, X. Li, M. L. Tayeb; J. Stat. Phys.; 2021

Goal:

Quantitative result in non-perturbative settings in any dimension d.

Main result

Theorem (22')

Supposing f_0^{ϵ} in weighted L^p space, it holds

$$||f^{\epsilon} - \rho \mathcal{M}||_{L^{2}} \lesssim \epsilon^{\beta}.$$

on bounded time intervals $[0, T^{\epsilon}]$, with (explicit) T^{ϵ} which verifies

$$T^{\epsilon} \xrightarrow[\epsilon \to 0]{} +\infty$$

and where

$$\beta = \frac{p-d}{p-1}.$$

Main difficulty: appropriate functional framework

$$\epsilon \, \partial_t \, f^{\epsilon} + v \cdot \nabla_x \, f^{\epsilon} + E^{\epsilon} \cdot \nabla_v \, f^{\epsilon} = \frac{1}{\epsilon} \, \nabla_v \cdot [v \, f^{\epsilon} + \nabla_v \, f^{\epsilon}]$$

We should find a norm $||| \cdot |||$ such that:

(i) $|||\cdot|||$ is dissipated by the leading order in ϵ , that is

$$\epsilon\,\partial_t\,g\,=\,\frac{1}{\epsilon}\,\nabla_v\cdot[\,v\,g\,+\,\nabla_v\,g\,] \implies \epsilon^2\,\frac{\mathrm{d}}{\mathrm{d}t}|||g|||\,\leq\,0\,,$$

$$ightarrow$$
 verified by : $\int_{\mathbb{R}^d} arphi\left(rac{\mathcal{g}}{\mathcal{M}}
ight) \, \mathcal{M} \, \mathrm{d} v$, for all convex $arphi$

(ii) ||| \cdot ||| controls E^ϵ : since $\nabla_{\mathsf{x}} \cdot E^\epsilon = \rho^\epsilon$, for all p > d we have

$$W^{1,p}\left(\mathbb{T}^{d}\right) \hookrightarrow L^{\infty}\left(\mathbb{T}^{d}\right) \implies \|E^{\epsilon}\|_{L^{\infty}(\mathbb{T}^{d})} \leq \|\rho^{\epsilon}\|_{L^{p}(\mathbb{T}^{d})}$$

$$ightarrow \underline{\mathsf{Poupaud}} \ \& \ \mathsf{Soler}(00') \ \mathsf{proposed} \ |||f^{\epsilon}|||_p^p = \int_{\mathbb{R}^d} \left| \frac{f^{\epsilon}}{\mathcal{M}} \right|^p \mathcal{M} \, \mathrm{d}v \, \mathrm{d}x$$

Key step: estimate of the $||| \cdot |||_p$ -norm

• Computations yield

$$\frac{\mathrm{d}}{\mathrm{d}\,t}|||f^{\epsilon}|||_{p}^{p} \leq C ||E^{\epsilon}||_{L^{\infty}(\mathbb{T}^{d})}^{2}|||f^{\epsilon}|||_{p}^{p},$$

for C independent of ϵ . Poupaud & Soler deduce

$$\frac{\mathrm{d}}{\mathrm{d}\,t}|||f^{\epsilon}|||_{p}^{p} \leq C|||f^{\epsilon}|||_{p}^{p+2},$$

which yields $|||f^{\epsilon}(t)|||_{p} < +\infty$ if $t \lesssim |||f_{0}^{\epsilon}|||_{p}^{-2}$ (blows up in finite time).

Key idea

• consider $\pi^{\epsilon}(t, x) = \int_{\mathbb{R}^d} f^{\epsilon}(t, x - \epsilon v, v) \, dv$ and $I^{\epsilon}(t, x)$ defined by $I^{\epsilon} = -\nabla_x \psi^{\epsilon}, \quad -\Delta_x \psi^{\epsilon} = \pi^{\epsilon} - \rho_i,$

and the following decomposition

$$\frac{\mathrm{d}}{\mathrm{d}\,t} |||f^{\epsilon}|||_{p}^{p} \leq C ||E^{\epsilon}||_{L^{\infty}(\mathbb{T}^{d})}^{2} |||f^{\epsilon}|||_{p}^{p}$$

$$\leq C \left(||E^{\epsilon} - I^{\epsilon}||_{L^{\infty}(\mathbb{T}^{d})}^{2} + ||I^{\epsilon} - E||_{L^{\infty}(\mathbb{T}^{d})}^{2} + ||E||_{L^{\infty}(\mathbb{T}^{d})}^{2}\right) |||f^{\epsilon}|||_{p}^{p}.$$

• We focus on $\|E^{\epsilon} - I^{\epsilon}\|_{L^{\infty}(\mathbb{T}^d)}$. It holds

$$(E^{\epsilon}-I^{\epsilon})(t,x) = \nabla_{x} \Delta_{x}^{-1} \int_{\mathbb{R}^{d}} f^{\epsilon}(t,x-\epsilon v,v) - f^{\epsilon}(t,x,v) dv.$$

Therefore, for all p>d it holds (with $\gamma=1/(p-d)$)

$$W^{1,p}\left(\mathbb{T}^d\right) \hookrightarrow \mathcal{C}^{\gamma}\left(\mathbb{T}^d\right) \implies \|E^{\epsilon} - I^{\epsilon}\|_{L^{\infty}(\mathbb{T}^d)} \leq C \, \epsilon^{\gamma} \, |||f^{\epsilon}|||_{p}.$$

In the end we deduce : $\frac{\mathrm{d}}{\mathrm{d}\,t}|||f^\epsilon|||_p^p \leq C\,\epsilon^\gamma\,|||f^\epsilon|||_p^{p+2}.$

Perspectives

Some open problems:

- derive the VPFP model as the mean-field limit of a particle system uniformly in the fluid limit¹;
- quantitative long-time behavior of the non-linear model in non-perturbative setting;
- including collision operators closer to physics (ex: Landau²)

¹D. Bresch, P.-E. Jabin, Z. Wang (19)

²S. Chaturvedi, J. Luk, T. Nguyen