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Overview

Models for neural networks generally focus on the dynamics of the
electrical potential in neurons membrane throughout the network. We

consider models describing 3 distinct scales :

Macroscopic scale :
Rough description ;

describes quantities
we can measure.

Mesoscopic scale :
Also called Mean-field
model.

Intermediate scale.

Microscopic scale :

Exhaustive
description of the
system.
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Physical model & motivations



Behavior of a neuron

e We focus on the dynamics of the voltage through the membrane of a
neuron. Experiments showcase 2 main features

(7) Delay when responding to an external
input.

(i) Self-regulation.

Hodgkin & Huxley, '52.

e Hodgkin & Huxley obtained a precise but mathematically complicated
model.
e We will use a simplified version that captures its main features :
FitzHugh-Nagumo’s model for a neuron
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FitzZHugh-Nagumo's neuron

FitzHugh-Nagumo’s equation for one neuron

th - (N(Vt) — Wt ol Iext) dt aF \/Ech
dw; = A(ve, wt) dt,

where v; € R stands for the potential of the membrane and w; € R is an
adaptation variable which captures delay.
e A and N have confining properties to capture self-regulation

A(v,w) =av—bw +c,
where a,c € R and b > 0. N is non-linear, the canonical example is
N(v) = v—v3.
e Brownian motion B; captures uncertainty in our description.

o oyt is the external input (artificial stimulation ; interaction with other

neurons).
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Microscopic scale

e When the neural network consists in n neurons, the it" neuron receives
current from other neurons :

n
159

fo = — 2N (v — VI
ext p (V v )7 (1)
Jj=1

where coefficient 1) € R, describes the strength of interactions between
neurons (¢ > 0 — attractive behavior).

e We obtain the following microscopic model, where 1 < i < n

dvi = | N(v] —Wt—fz —vl) | dt + v2dB.,
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Mean field limit

It was proved that in the mean field limit n — +o0o the microscopic
system is described by

FitzHugh-Nagumo’s mean field equation
Ocf = =0, (N(v) — w — (v = V)) f) — 0w (A(v, w)f) + O2f,
(0, -) = fo,

where f(t, v, w) is the probability of finding neurons with a potential
v € R and an adaptation variable w € R at time ¢t > 0 within the
network, and the macroscopic quantities )V and WV are given by :

(V(t),W(t)) = / (v, w)f(t, v/, w')dv dw'.

R2
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Mean field limit
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Strong interactions & concentration phenomenon

e Let us now focus on the regime of strong interactions, that is when
1 — +o00. We set 1) = % and get

€

0:f¢ = -0, ((N(v) —w— }(v - v&)> f5> — 0w (A(v, w)f€) + D2f<.

e Multiplying the equation by |v — V¢|? and integrating yields

/ v — VE(t) Fedvdw = O(e). (3)
R? Y

E=

Hence, € is expected to concentrate around V¢

fe(t,v,w) s Syer)(v) ® F(t, w), (4)
where F¢(t,w) = / fe(t,v,w)dv.
R
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Concentration’s profile

Our goal is to determine the profile of this concentration.

y y
1

2

Concentration with Gaussian profile Concentration with triangular profile

Here are plots of
_ 1! (l)
y=2:85)
for 8¢ =1;0.7;0.5 and g a gaussian profile (fig. 1) and triangular profile

(fig. 2).
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Goal of the presentation

e Consider the following re-scaled version g€ of 7€ :

fe(tv v, W) = 9(1(-1-) ge <t’ d 93():)(” g W = Wé(t)> ’ (5)

where ¢ is the concentration rate of ¢ around its mean value V¢. We
expect
0°(t) — 0.

e—0

e GOAL : proving that g€ converges and compute the limit.
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Formal derivation of the concentration’s profile

We obtain the equation on g€ changing variables in the equation on 7€

Deg = — =0, [(N(VE + 0°u) — N(V) — E(FE(t,)) — x) &]

65
1
—0x [Ao (0°u, x) g¢] + WOU (a‘ug® +0ug°),
1ge o (0°)? -
where o = (0°)'6° + , Ao = A—c and € is an error term.
€

e It is natural to take 6¢(t) = ¢ = /c. Indeed, we obtain

0eg" = ——=0u [(N(V + Veu) — N(V°) — E(F(t,-)) — x) &]

Sl

" (6)
—0x [Ao (Vieu, x) g1 + —0u (ug” + 0ug”).
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Formal derivation

e Considering the stiffer term in the former equation, we expect

g(t, u,x) ~ M(u) ® G*(t, x),

G

2
where M(u) = \/lz?exp (—é) and G(t,x) = /ge(t,u,x) du.
R

e Furthermore, since G¢ solves
0: G + a/edy ( /R ugedu) — bdy (xG°) =0, (7)
it is expected that
g(t,u,x) = M(u) ® G(t, x),

where G solves
0:G — bOx (xG) = 0.
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Weak convergence




e In this section, we will prove the following weak convergence result
g°(t,u,x) = M(u) @ G(t,x),
e—0
in P2(R?), the set of probability distributions with moments up to order 2
P? (R%) = {g € P(R2)|/ (Jul® +|x]?) g(u,x)dudx} :
R2
e Weak convergence in P2(R?) is induced by the Wasserstein metric W,
W2 (g,h) = inf / lu—v)? + |x — x[*m(u, x, v, X)dudxdvdy,
mel(g,h)

where (g, h) stands for the set of all couplings between g and h.
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Weak convergence result

Théoréme

g¢ converges to M @ G in C° (Rj‘r, (772(R2), Wz)) Furthermore, for all
(du, 0x) €]0, 1[x]0, b, there exists C > 0 such that

C ‘U
7e7%t + C\/gv

Ws (g5, M ® G) < Wa (G§, Go)e >t + NG

for all e > 0 and t > 0.

e The following confining property is required
) N(V — NV
limsup sup (V+v) V) = —o0. (8)
|v|=+oo VEK v

e Recall that coefficient b is the confining part of A
A(v,w) = av—bw + c.

e Standard assumptions are required (moments on fy ; polynomial growth

and local Lipschitz regularity for ).
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Key arguments

e Uniform estimates (in time and €) on f¢’s moments using confining
properties of A and N (uniformity in time) and concentrating properties

1
of the stiffer term —=(v — V) (uniformity in ¢).
€

e Regularization effects for g¢'s moments with respect to the re-scaled
voltage variable u using concentration properties of the stiffer term

1
28,, (ug® + 9,8°).

e Coupling method in order to estimate the Wasserstein distance between
gfand M® G
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Strong convergence




Additional difficulties

e For now, we only achieved weak convergence. In this section, we will
obtain a strong convergence result.

e In the strong convergence result, we will require uniform control over
g5. Together with our homogeneous in time concentration rate 8¢ = /e,

this yields
€ _ i eV — VS _ €
5 w) = o5 (2w - 5). (9

e Consequently, if we suppose for instance the following control

sup/ lul2g€dudx < +oo,
e>0 JR2

then we implicitly consider well prepared initial data fy :

WA(55. ov; @ F§) = O(6).
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Scaling for strong convergence

Since we do not want to prepare the initial data fy, we suppose
05 = 0o > 0.
Another constraint on ¢ arises from the equation on g©
08" = — -0 [(N(V" +6°u) — N(V) — £(F(t, ) — ) &°]
—0x[Ao (0°u, x) g°]
+ﬁ&, (((05)’96 + (9:)2> ug + 8ug€> .

Using the weak convergence result, we know that the concentration
profile is Gaussian. Hence, it is natural to impose

(6°)6° + @ =1
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Equation on g°¢

e Hence, we obtain the following equation

Degt = ——0, [(N(V° + 6°u) — N(V°) — E(FE(t, )) — x) &°]

" . (10)
_ax [AO (QEU7X) ge] + Wau (Ug6 + é)uge) .
e The convergence rate is given by
0°(t) = \/936—2; +e(1—e—%). (11)

e We recover the case of well-prepared initial data taking 6y = +/c.
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Main Result

20

Théoréme

g© converges to MG in LS. (R}, L% (my,.)) for some k > 0 great
enough. Furthermore, for all § €]0, 1], there exists C > 0 such that the
following estimate holds true :

g = MGEx(m .y < 1G5 = GollZa(yy:y

+ Ce (e ™) (1L + X)5 F2(my ) + 10:88 12 ) )
foralle >0 and t > 0.
e The weight my . is given by

my . (u,x) = M~ (u)M; 1 (x),

K

M, (u) = \/Zexp (fgu2> .

where
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Key arguments : a priori estimates

21

e Using confining properties of N and A and "good" contribution of the
Fokker-Planck dissipation Dgp, we obtain for 0 < § < 1

1d 5 i
2 e VEsme ) + oz DFP(E) < Cllg i  (12)

e Similar results stand for 0,g¢ and xg© since they solve equation similar
to g°.
e Hence, we obtain uniform bounds on
% lee?
dt LM’

using the former estimates.
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Key Argument : convergence

29

e We use the following relation

lg® = MGllz2(m, ) = llg” = MG 1z2(my ) + 167 = Cllfa oy (13)

(m1,,¢) - ‘

: 2

e We estimate ||G® — GHLz(M;l)

equation with source term controlled by 0, g¢.
. 2 .

e We estimate ||g¢ — I\/IG€HL2(m1,N) using that

using that G — G solves a transport

lg® — MG |[E2(m, .y = €2 (my ) = 1G 7211 (14)
coupled with (12) and Gauss-Poincare's inequality

I8¢ = MG*||32(m, .y < Drp(g°)-
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e Obtaining similar results following a Hamilton-Jacobi method.
e Adding a space variable to the model.

e Numerical analysis of concentration phenomena.
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Thank you for your attention !
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