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Overview

Models for neural networks generally focus on the dynamics of the
electrical potential in neurons membrane throughout the network. We
consider models describing 3 distinct scales :

Macroscopic scale :
Rough description ;
describes quantities
we can measure.

Mesoscopic scale :
Also called Mean-field
model.
Intermediate scale.

Microscopic scale :
Exhaustive
description of the
system.
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Physical model & motivations



Behavior of a neuron

• We focus on the dynamics of the voltage through the membrane of a
neuron. Experiments showcase 2 main features

Hodgkin & Huxley, ’52.

(i) Delay when responding to an external
input.

(ii) Self-regulation.

• Hodgkin & Huxley obtained a precise but mathematically complicated
model.
• We will use a simplified version that captures its main features :
FitzHugh-Nagumo’s model for a neuron
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FitzHugh-Nagumo’s neuron

FitzHugh-Nagumo’s equation for one neuron{
dvt = (N(vt)− wt + Iext) dt +

√
2dBt ,

dwt = A (vt ,wt) dt,

where vt ∈ R stands for the potential of the membrane and wt ∈ R is an
adaptation variable which captures delay.
• A and N have confining properties to capture self-regulation

A(v ,w) = a v−b w + c ,

where a, c ∈ R and b > 0. N is non-linear, the canonical example is

N(v) = v−v3.

• Brownian motion Bt captures uncertainty in our description.
• Iext is the external input (artificial stimulation ; interaction with other
neurons).
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Microscopic scale

• When the neural network consists in n neurons, the i th neuron receives
current from other neurons :

Iext = −ψ
n

n∑
j=1

(v i − v j), (1)

where coefficient ψ ∈ R+ describes the strength of interactions between
neurons (ψ ≥ 0→ attractive behavior).

• We obtain the following microscopic model, where 1 ≤ i ≤ n
dv i

t =

N(v i
t )− w i

t −
ψ

n

n∑
j=1

(v i
t − v j

t )

 dt +
√
2dB i

t ,

dw i
t = A(v i

t ,w
i
t )dt.

(2)
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Mean field limit

It was proved that in the mean field limit n→ +∞ the microscopic
system is described by

FitzHugh-Nagumo’s mean field equation ∂t f = −∂v ((N(v)− w − ψ(v − V)) f )− ∂w (A(v ,w)f ) + ∂2
v f ,

f (0, ·) = f0,

where f (t, v ,w) is the probability of finding neurons with a potential
v ∈ R and an adaptation variable w ∈ R at time t ≥ 0 within the
network, and the macroscopic quantities V and W are given by :

(V(t),W(t)) =

∫
R2

(v ′,w ′)f (t, v ′,w ′)dv ′dw ′.
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Mean field limit
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FitzHugh-Nagumo model of neuronal network (2015).
• E. Luçon and W. Stannat. Mean-field limit for disordered diffusions
with singular interactions (2014).
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Strong interactions & concentration phenomenon

• Let us now focus on the regime of strong interactions, that is when
ψ → +∞. We set ψ = 1

ε and get

∂t f
ε = −∂v

((
N(v)− w − 1

ε
(v − Vε)

)
f ε
)
− ∂w (A(v ,w)f ε) + ∂2

v f
ε.

• Multiplying the equation by |v − Vε|2 and integrating yields∫
R2
|v − Vε(t)|2 f εdvdw =

ε→0
O(ε). (3)

Hence, f ε is expected to concentrate around Vε

f ε(t, v ,w) ∼
ε→0

δVε(t)(v)⊗ F ε(t,w), (4)

where F ε(t,w) =

∫
R
f ε(t, v ,w)dv .

9

9/24



Concentration’s profile

Our goal is to determine the profile of this concentration.

Concentration with Gaussian profile Concentration with triangular profile

Here are plots of

y =
1
θε

g
( v

θε

)
,

for θε = 1; 0.7; 0.5 and g a gaussian profile (fig. 1) and triangular profile
(fig. 2).
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Goal of the presentation

• Consider the following re-scaled version g ε of f ε :

f ε(t, v ,w) =
1

θε(t)
g ε
(
t,
v − Vε(t)

θε(t)
,w −Wε(t)

)
, (5)

where θε is the concentration rate of f ε around its mean value Vε. We
expect

θε(t) −→
ε→0

0.

• GOAL : proving that g ε converges and compute the limit.
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Formal derivation of the concentration’s profile

We obtain the equation on g ε changing variables in the equation on f ε

∂tg
ε = − 1

θε
∂u [(N(Vε + θεu)− N(Vε)− E(f ε(t, ·))− x) g ε]

−∂x [A0 (θεu, x) g ε] +
1

(θε)2 ∂u (αεug ε + ∂ug
ε),

where αε = (θε)′θε +
(θε)2

ε
, A0 = A− c and E is an error term.

• It is natural to take θε(t) = θε =
√
ε. Indeed, we obtain

∂tg
ε = − 1√

ε
∂u
[(
N(Vε +

√
εu)− N(Vε)− E(f ε(t, ·))− x

)
g ε
]

−∂x [A0 (
√
εu, x) g ε] +

1
ε
∂u (ug ε + ∂ug

ε).

(6)
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Formal derivation

• Considering the stiffer term in the former equation, we expect

g ε(t, u, x) ∼
ε→0

M(u)⊗ G ε(t, x),

where M(u) =
1√
2π

exp

(
−u2

2

)
and G ε(t, x) =

∫
R
g ε (t, u, x) du.

• Furthermore, since G ε solves

∂tG
ε + a

√
ε∂x

(∫
R
ug εdu

)
− b∂x (xG ε) = 0, (7)

it is expected that

g ε(t, u, x) −→
ε→0

M(u)⊗ G (t, x),

where G solves
∂tG − b∂x (xG ) = 0.
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Weak convergence



Setting

• In this section, we will prove the following weak convergence result

g ε(t, u, x) ⇀
ε→0

M(u)⊗ G (t, x),

in P2(R2), the set of probability distributions with moments up to order 2

P2 (R2) =

{
g ∈ P(R2)|

∫
R2

(
|u|2 + |x |2

)
g(u, x)dudx

}
.

• Weak convergence in P2(R2) is induced by the Wasserstein metric W2

W 2
2 (g , h) = inf

π∈Π(g ,h)

∫
R4
|u − ν|2 + |x − χ|2π(u, x , ν, χ)dudxdνdχ,

where Π(g , h) stands for the set of all couplings between g and h.

14

14/24



Weak convergence result

Théorème

g ε converges to M ⊗ G in C0
(
R∗+,

(
P2(R2),W2

))
. Furthermore, for all

(δu, δx) ∈]0, 1[×]0, b[, there exists C > 0 such that

W2 (g ε,M ⊗ G ) ≤W2 (G ε
0 ,G0)e−δx t +

C√
ε
e−

δu
ε t + C

√
ε,

for all ε > 0 and t ≥ 0.

• The following confining property is required

lim sup
|v |→+∞

sup
V∈K

N(V + v)− N(V)

v
= −∞. (8)

• Recall that coefficient b is the confining part of A

A(v ,w) = av−bw + c .

• Standard assumptions are required (moments on f ε0 ; polynomial growth
and local Lipschitz regularity for N).
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Key arguments

• Uniform estimates (in time and ε) on f ε’s moments using confining
properties of A and N (uniformity in time) and concentrating properties

of the stiffer term −1
ε

(v − Vε) (uniformity in ε).

• Regularization effects for g ε’s moments with respect to the re-scaled
voltage variable u using concentration properties of the stiffer term
1
ε
∂u (ug ε + ∂ug

ε).

• Coupling method in order to estimate the Wasserstein distance between
g ε and M ⊗ G
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Strong convergence



Additional difficulties

• For now, we only achieved weak convergence. In this section, we will
obtain a strong convergence result.
• In the strong convergence result, we will require uniform control over
g ε0 . Together with our homogeneous in time concentration rate θε =

√
ε,

this yields

f ε0 (v ,w) =
1√
ε
g ε0

(
v − Vε0√

ε
,w −Wε

0

)
. (9)

• Consequently, if we suppose for instance the following control

sup
ε>0

∫
R2
|u|2g εdudx < +∞,

then we implicitly consider well prepared initial data f ε0 :

W 2
2 (f ε0 , δVε0 ⊗ F ε0 ) =

ε→0
O(ε).
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Scaling for strong convergence

Since we do not want to prepare the initial data f ε0 , we suppose

θε0 = θ0 > 0.

Another constraint on θε arises from the equation on g ε

∂tg
ε = − 1

θε
∂u [(N(Vε + θεu)− N(Vε)− E(f ε(t, ·))− x) g ε]

−∂x [A0 (θεu, x) g ε]

+
1

(θε)2 ∂u

((
(θε)′θε +

(θε)2

ε

)
ug ε + ∂ug

ε

)
.

Using the weak convergence result, we know that the concentration
profile is Gaussian. Hence, it is natural to impose

(θε)′θε +
(θε)2

ε
= 1.
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Equation on g ε

• Hence, we obtain the following equation

∂tg
ε = − 1

θε
∂u [(N(Vε + θεu)− N(Vε)− E(f ε(t, ·))− x) g ε]

−∂x [A0 (θεu, x) g ε] +
1

(θε)2 ∂u (ug ε + ∂ug
ε) .

(10)

• The convergence rate is given by

θε(t) =

√
θ2
0e
− 2t
ε + ε

(
1− e−

2t
ε

)
. (11)

• We recover the case of well-prepared initial data taking θ0 =
√
ε.
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Main Result

Théorème

g ε converges to MG in L∞loc
(
R+
∗ , L

2 (m1,κ)
)
for some κ > 0 great

enough. Furthermore, for all δ ∈]0, 1[, there exists C > 0 such that the
following estimate holds true :

‖g ε −MG‖2L2(m1,κ) ≤ eCt‖G ε
0 − G0‖2L2(M−1

κ )

+ CeCt
(
ε+ e−

2δt
ε ε−δ

)(
‖(1 + x)g ε0‖2L2(m1,κ) + ‖∂xg ε0‖2L2(m1,κ)

)
,

for all ε > 0 and t ≥ 0.

• The weight m1,κ is given by

m1,κ(u, x) = M−1(u)M−1
κ (x),

where

Mκ(u) =

√
κ

2π
exp

(
−κ
2
u2
)
.
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Key arguments : a priori estimates

• Using confining properties of N and A and "good" contribution of the
Fokker-Planck dissipation DFP , we obtain for 0 < δ < 1

1
2
d

dt
‖g ε‖2L2(m1,κ) +

δ

(θε)2DFP(g ε) ≤ C‖g ε‖2L2(m1,κ). (12)

• Similar results stand for ∂xg ε and xg ε since they solve equation similar
to g ε.
• Hence, we obtain uniform bounds on∣∣∣∣ ddt ‖G ε‖2L2(M−1

κ )

∣∣∣∣ ,
using the former estimates.
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Key Argument : convergence

• We use the following relation

‖g ε −MG‖2L2(m1,κ) = ‖g ε −MG ε‖2L2(m1,κ) + ‖G ε − G‖2
L2(M−1

κ )
. (13)

• We estimate ‖G ε − G‖2
L2(M−1

κ )
using that G ε − G solves a transport

equation with source term controlled by ∂xg ε.
• We estimate ‖g ε −MG ε‖2L2(m1,κ) using that

‖g ε −MG ε‖2L2(m1,κ) = ‖g ε‖2L2(m1,κ) − ‖G
ε‖2

L2(M−1
κ )

, (14)

coupled with (12) and Gauss-Poincare’s inequality

‖g ε −MG ε‖2L2(m1,κ) ≤ DFP(g ε).
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Current work

• Obtaining similar results following a Hamilton-Jacobi method.

• Adding a space variable to the model.

• Numerical analysis of concentration phenomena.
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Thanks

Thank you for your attention !
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