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Motivations



Kinetic description of a plasma

We consider electrons subjected to:
(a) electric field E = —0x¢, (b) collisions with motionless ions.

The system is described by the following equation

Vlasov-Fokker-Planck equation

1 1 1
Befe + VO — Z0:00,f = 50, [vF + d,f]. (1)
€ & €

f€(t,x, v) is the probability of finding the electron at time ¢t > 0, position
x € T, with velocity v € R. For some parameter ¢ > 0.
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hydrodynamic regime

We consider the hydrodynamic scaling € — 0 in the equation
1 1 1
O fS + —vOuf® — 0,00, f° = 50, [vF®+ O,f°].
€ € €

Considering the leading order, we expect

f(t,x,v) ~ /f((t,x,v)dv
JR

e—0

1
V2T

limit of p°: consider 7€ = [, f*(t,x — ev, v) dv, which solves

Oy € — Oy (/ O Fe(tyx —ev,v) dv + 8,(775) =0.
R
Therefore, we expect ¢(t, x, v) ~ p(t,x) M(v), with
e—

Macroscopic equation

Orp — Ox[Oxpp+0xp] =0,

whose stationary state is poo(x) = ¢ exp (—¢(x)). 3/14



Purposes

The situation is as follows

t — +00

fe(t,x,v) Poo(Xx) M(v)

e—0 t — 400
p(t, x) M(v)

GOAL: Build a numerical method and prove quantitative asymptotic
preserving properties for the limits ¢ — 0 and t — +o00 simultaneously
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Numerical analysis of the model



From key estimate to functional space

Dissipation of the [%-norm
F© |
% (7o)
N

dxMdv

2
dxMdv = —%/
€

i/’ﬁ:/u_ﬁw

— Functional space :

€

VM

e Spectral decomp. in Hermite basis (H),cy of L2 (M dv)

€ L2 (dx M(v)dv) .

f'f

(t,x,v) ZDk t,x) He(v
VoM ke

e No weight with respect to dx so

Dy € L? (dx) .
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Reformulated equations

Reformulated Vlasov-Fokker-Planck equation

1 K
0:Df + ~ (VkADi_, - VK+1A"Dy,) = ~5Df, keN,

with Au = Owu + OXT¢ uand (Au, v),» = (u, A*v),>. Equilibrium is
Doco = P, and Dy =0 if k>1,
macroscopic equation reads
0Dy + A*ADy =0, and Dy =0 if k>1,

and the L2 estimate rewrites

Dissipation of the L?>-norm in Hermite basis

d A D 2 €12
0% = Dl = =5 > K 105l -
keN*
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Fully discrete scheme

Reformulated Vlasov-Fokker-Planck equation

n+1 n
Dk — Dk

1 * k 1
—— + = (VA DIt} - VA 143 001) = -5 D,

for all k € N where discrete operators A, and A} verify

(Apu, v),2 = (u, Apv),2 preservation of the key estimate ‘

Anvpy =0 preservation of equilibrium state ‘

ZAXJ- (Aju); Voo j =0 conservation of mass
J

for all (uj)jejy (Vj)jej
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Setting D , = 0 and D7 , = Dj if k > 1, we prove

Theorem (with F. Filbet, 22’)

There exist & > k > 0 independent of the discretization such that

Izl < 1oL (H 2A€Z> T4 eC||D0 - Dl (1 + mAE)E,

and

|o¢ - D5

< ¢ (|08 - | + €llD° = Do) (1 + w2t E,

5" o < [B° - 0] 1+ 580

for all n >0 and € > 0.
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Key arguments of the proof: convergence in [?

We go back to the L? estimate

D™ — Do |3, = |ID" = DooZ
At

2 2
< 2 o

A Lack of coercivity w.r.t. Dy — introduce the elliptic problem
(A An)up = Dg — Deo o
ZAXJ uj\/ﬁoo,j = 0’
jeJ
and define a modified entropy functional
Mg = D" — Doz + aoe (Df, Apup) -
Relying on Poincaré inequality || Apuf|/i2 < C||D§ — Do o] 12, we prove

10"~ Duclffe S H5 S 10"~ Dl

~ ~

Hn+1 _Hn 2
=0 S —5(1—ao) DI — o || D5 - DI, -
At € 9/14



Key arguments of the proof: convergence in H*

Introduce the following H' norm

Ap,if k=0,
1By D22 = > " Bui D72, where By =
keN Ay, else.
For this special choice of By, it holds
|1BnD" 172 = |1BxD" |72 2 1|2
- =2 % kB0

KEN*
2
== > Vk ([A;, A DL, ARDEY)
k>2
We use that || [A, A*] Df* Y|z < ||| |DfFY]| = and Young inequality

1BxD" ][22 — [1BaD" 72 _
At -

1 1112 ni1](2
— 2 80T |12 + € [[DI7 s -

A Lack of coercivity w.r.t. Dy — we conclude as in the former step
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Numerical experiments




We take At = 1073, 200 Hermite modes, 64 points in space and
¢(x) = 0.1 cos (27 x) + 0.9 cos (47 x) .
Test 1: ¢ = 1 and
fo(x,v) = (14 0.5cos (27 x)) exp (—|v[*/2) /V2r,
Test 2: ¢ = 10~* and

fo(x,v) = (1+ 0.5cos (27 x)) exp (—|v — 1]/2) /V2r.
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Time evolution in log-scale of || — fwo|[;2(s-1) (blue),
1€ = p* M| 2 g2y (red), [lp° = poclliz(p5) (pink)
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Second Test: ¢ = 10*

Time evolution in log scale of [ — p* M| 2(¢_1) (red), [|p° = poollj2(,22)
(pink), [lp° = pll;2(,z2) (blue points) and [|p — pooll;2(,22) (black)
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e Analysis of the scheme with a Poisson non-linear coupling in
perturbative setting and dimension 2;

e Spectral analysis of the model to quantitatively describe oscillations;

e analysis with a Poisson non-linear coupling in non-perturbative setting
— requires a better understanding of the model at the continuous level;

14/14



	Motivations
	Numerical analysis of the model
	Numerical experiments

