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Introduction



Overview

3 distinct scales to describe neural networks :

Macroscopic scale Mesoscopic scale Microscopic scale

GOAL : Quantitative analysis of the asymptotic regime

" (mesoscopic scale), — macroscopic scale "
’ e—0
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Behavior of a single neuron

e We focus on the voltage through the membrane of a neuron.
e Hodgkin & Huxley (52") : precise but complicated model [gif] .

e FitzHugh-Nagumo : simplified model which captures the main features

FitzHugh-Nagumo’s model

dve = (N(Vt) — W + Iext) dt + ﬁdBt,
th = /A\(Vt7 Wt) dt,

e 2 equations for periodic behavior (v; : voltage, w; : adaptation
variable) .
e Confining assumptions to ensure spikes :

A(v,w)=av—bw + c, "N(v) =v—v3".

e Noise to take into account random fluctuations. 3/14



Microscopic description

FitzHugh-Nagumo neural network of size n

For / between 1 and n :

dvi = (N(v{) — wj + Ii,) dt + V2dB.,

dw] = A(v}, w})dt.

e Neurons interact following Ohm's law
i 1 n i )
/ext = 7} Zq)(xfij)(vt o Vi) :
j=1

e The conductance ®(x;, x;) between neuron i and j depend on their
spatial location x; and x;.
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Mesoscopic description : n — 400

FitzHugh-Nagumo’s mean-field equation
{ N(v) — w — Ko(f) W
f

Of + Vi w) - — 0°f =0,
L A(v, w) J

e f(t,x,v,w) is the probability of finding neurons at time ¢ > 0 and
position x € K, with potential v € R and adaptation variable w € R.

e [Co(f) is the non-local term due to interactions between neurons

Ko(f)(x,v) = / O(x, x" ) (v — V) F (X', v, w')dx dv'dw'.
JKxR2
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Regime of strong interactions

Weak-Long / Strong-Short decomposition

d(x,x') = V(x,x") + % do(x — x')

weak-long range interactions . .
g g strong-short range interactions

The mean-field equation rewrites

N(v) — w — Ku(f€) W

fa € € A € /)( G )€ €
O f +v<v,w>[ o fJ — 32f° = 70()V [(v —V)Ffe],
v, w

where

) ' 1 f

p5(x) = /R f¢dvdw and V<(t,x) = A vf dvdw.
JR2 o JR2

Main goal

Analysis of the regime of Strong/Local interactions, that is when € — 0. 4,14



Formal derivation




Strong interactions and concentration phenomenon

(1) : Ot +V (v,w)-
A(v, w)

o We expect : (v — V) ¢ ~ 0, that is

€E—>

(N(V)W/Cw(f")) ] ’ 5
fo|=00f =20, [(v = V)fe],

£~ Gye(e,x) (V) ® F(t,x, w),
where F€ = [ f€dv. In the end, we obtain*
F(t, x, v, w) — dy(e,0(v) @ F(t, x, w),
e—0
where (), F) satisfies
Y =NV) =W — (Y, po(x)V — W, (poV)(x)),
OtF + 0w (A(V,w)F) =0, (1)

po(X)W = / wF dw.
JR

1. Crevat, Faye, Filbet (19) 7/14




Concentration’s profile

What is the profile of concentration?

y y
1

Concentration with Gaussian profile Concentration with triangular profile

Here are plots of

1 v
y - \ﬁg \ﬁ )
for /e =1;0.7;0.5 and g a gaussian profile (fig. 1) and triangular profile

(fig. 2).
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Formal derivation of the profile

e It is driven by diffusion term with respect to the voltage variable v

‘ N(v) —w — Ky(f€) 7 o5 .

Oef +V(wy: ffl =0, | —(v=VY)f-+0,0f°,
A(v, w) ¢

e 7 converges to the local equilibrium :

fe(t,x,v,w) NOJM (v =V)® F(t,x,w),

M .
s Po/ €

where M /(v — V) = - Po exp </2)0(v — VF)2>.

Goal

Rigorously prove that the profile is Gaussian with quantitative estimates.
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Hamilton-Jacobi approach




Hopf-Cole transform of f¢

e Consider the Hopf-Cole transform? ¢¢ of £

FU&%W)—@ xp(lo (t.x.v,w)).

We prove
Theorem (E. Bouin and A.B.3)

Suppose that in L2 (K x R?)
X
dx,vomw) =~y 24 00,
e—0 2
Then it holds in LS (R x K x R?)
s (txvw) = —2LD 1,y 210

e—0 2

2. Barles, Mirrahimi, Perthame (09)
3. In preparation
4. Mirrahimi, Roquejoffre (15)
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Strategy : we write
P(t,x,v,w) = — 20 |v — VE(t, x) )P + eo5(t,x, v, w).
The correction ¢§ solves
€ € 1 € €
Hi[¢1] + ;J1[ff’1] = 0.

We look for sub/super-solution for the operator Hi + 1 Jf under the
form ¢4 = ¢1 + ¢, where J; [¢1] = O then apply a comparison principle.
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Kinetic approach




Formal derivation

e We consider a re-scaled version g of 7°

1 o )E
fe(t,x, v,w) = Eg{ (t.x.VH}/,WW(>.

Suppose #° = /e. Changing variables in the equation on € it yields

Equation on the profile

1
0:8° + Vv,w) [bog]** [pove+0.8°],

where by depends on 1/./¢ and 7. Therefore, we expect
g(t, x, v, w) :04\/1,,&(\/)& G(t,x,w).
€E—

Strategy
proving that g° converges to M, @ G.
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Weak convergence result




Weak convergence result

Theorem (F. Filbet and A.B.°)

Under suitable assumptions on fg, there exists C > 0 such that

xeK Po

1 1 o
sup W> <ﬂ(fe~, — My (- —V)® F) <C (eae + e Po f/f) :
0

foralle >0 and t > 0.

Here, W, stands for the Wasserstein distance of order 2.

Key arguments of the proof :

e Uniform moment estimates.

e Analytic coupling method ® in order to estimate the Wasserstein

distance between g and M @ G (G satisfies (1) after changing
variables) .

5. Concentration phenomena in Fitzhugh-Nagumo’s equations : A mesoscopic
approach, arXiv :2201.02363
6. Fournier, Perthame (20).
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Conclusion and perspectives

Conclusion :

e [°° convergence estimates following a Hamilton-Jacobi approach.

e \Weak convergence result with the (formal) optimal convergence rate.
o [! convergence result with deteriorated convergence rate.

e We also prove a convergence result in (inverse Gaussian) weighted L°
spaces and recover the optimal rate by propagating regularity.
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