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Introduction



Overview

We consider that neural networks are particle systems. It is possible to
describe them through 3 distinct scales :

Macroscopic scale Mesoscopic scale Microscopic scale

GOAL : Quantitative analysis of the asymptotic regime

" (mesoscopic scale), — macroscopic scale "
e—0
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Behavior of a single neuron

e We focus on the voltage through the membrane of a neuron.
e Hodgkin & Huxley (52") : precise but complicated model [gif] .

e FitzHugh-Nagumo : simplified model which captures the main features

FitzHugh-Nagumo’s model

dve = (N(Vt) — W + Iext) dt + ﬁdBt,
th = /A\(Vt7 Wt) dt,

e 2 equations for periodic behavior (v; : voltage, w; : adaptation
variable) .
e Confining assumptions to ensure spikes :

A(v,w)=av—bw + c, "N(v) =v—v3".

e Noise to take into account random fluctuations. 3/17



Microscopic description

FitzHugh-Nagumo neural network of size n

For / between 1 and n :

dvi = (N(v{) — wj + Ii,) dt + V2dB.,

dw] = A(v}, w})dt.

e Neurons interact following Ohm's law
1 n . )
lext = 7} Z;CD(XI'-,XJ')(VI' - Vi) o
=

e The conductance ®(x;, x;) between neuron i and j depend on their
spatial location x; and x;.
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Mesoscopic description : n — 400

FitzHugh-Nagumo’s mean-field equation

N(v) — w — Ko(f) W )
Bef + divy  w) fl — 92F =0,
L A(v, w) J

e f(t,x,v,w) is the probability of finding neurons at time ¢ > 0 and
position x € K, with potential v € R and adaptation variable w € R.

e [Co(f) is the non-local term due to interactions between neurons

Ko(f)(x,v) = / O(x, x" ) (v — V) F (X', v, w')dx dv'dw'.
JKxR2
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Regime of strong interactions

Weak-Long / Strong-Short decomposition

d(x,x') = V(x,x") + % do(x — x')

weak-long range interactions . .
g g strong-short range interactions

The mean-field equation rewrites

N(v) — w — Ky(f€)
O:f¢ + (h\ ) L f‘} *(‘f)&f‘ B /10 o, [( V()ff].
A(v, w)
where
. : 1 "

Po JR

Main goal

Analysis of the regime of Strong/Local interactions, that is when € — 0. 4,17



Formal derivation




Strong interactions and concentration phenomenon

N(v) —w — Ky(f°) P 7
(1) : Qe F +diviy,w) K o ) f(] —92f¢ = 700 [(v —V)Fe],

e £ converges to a local equilibrium : [ |v — V<2 x (1)dvdw

1 .1 ' i
w2 <(f:[f>»~ ® Fﬁ) — [ v VP fedudw = 0.
/)O pO JR2 e—0

where V5 is the Wasserstein distance of order 2. In the end, we obtain!
F(t v W) = By(en)(V) @ F(t.x w) + O(VE),
where (), F) satisfies
3V = N(V) =W — (W, po(x)V — WV %, (poV)(x)),
OtF + 0w (A(V,w)F) =0, (1)

po(X)W = / wF dw.
R

. 1. Crevat, Faye, Filbet (19), Jabin, Rey (17), Kang, Vasseur (15)
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Concentration profile

o To refine our description, we consider a re-scaled version g¢ of <2 :

) 1 %
(t,x,v,w) = @g* <t.><, Y H‘V S W — W‘) ,
where 0¢ > 0 needs to be determined and

17
We = T/ wf dvdw .
/)0 R2

Main goal

proving that g¢ converges and compute the limit.

2. Mouhot, Mischler (06), Rey (12)
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Formal derivation

, 1 %
f‘(t,vaAW):g—(g‘ (tfx.v Hf)/ ,WW‘).

Suppose (¢ = ¢*. Changing variables in the equation on 1€ it yields

0:8° + div(, ,w)[bog] = 62ﬁ(')‘, (/)6(2"’1vg‘ + i)vg*) ,

Therefore ¢ = /e (i.e. « = 1/2) is the only suitable choice

Equation on the profile

0:g° + div(, ) [bog] = :i)v [pves+ 0,87,

where by depends on 1/./¢ and 7. Therefore, we expect

(6%, W) 5, Myg(4) @ Gt w) + O (V).
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Weak convergence result




Weak convergence result

Theorem (F. Filbet and A.B.3)

Under suitable assumptions on fg, there exists C > 0 such that

xeK Po

1 1 o
sup W> <ﬂ(fe~, — My (- —V)® F) <C (eae + e Po f/f) :
0

foralle >0 and t > 0.

Here, W, stands for the Wasserstein distance of order 2.

Key arguments of the proof :

e Uniform moment estimates.

e Analytic coupling method 4 in order to estimate the Wasserstein

distance between g and M @ G (G satisfies (1) after changing
variables) .

3. Concentration phenomena in Fitzhugh-Nagumo’s equations : A mesoscopic
approach, arXiv :2201.02363
4. Fournier, Perthame (20).
10/17



Strong convergence results




Towards strong convergence : time dependent 6°

e ()¢ = /¢ induces that at time t = 0, it holds

e Therefore, we impose 0°(t = 0) = 1. The only suitable choice is

0°(t, x) = Ve |1+ e 2ml)t/e (1

,1)

exponentially decaying remainder

The equation on g€ rewrites

. 1 ¢ € € ‘ €
0:8° + div(,,w)[bog°] = W()V [pove+0,8].
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Strong convergence result

Theorem (A.B.%)

Under suitable assumptions on f5, there exists C > 0 such that

ot
/ | F< — fHL,,QL(l )(s)ds < CeCty/e,
. O X v,w
for all ¢ > 0 and t > 0, where the limit f is given by
f(t,x,v,w) = M, ez (v = V)@ F,

where (V, F) solves (1).

5. Large coupling in a FitzHug-Nagumo neural network : quantitative and strong
convergence results, arXiv :2203.14558v2.
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Key arguments

o Relative entropy estimate yields g* ~ M ® GE+ O(y/e) in LT .
e—

e Proving that G converges towards G :

(1) We work on the re-scaled version H*

H¢ = / g (t.x.v,wf(3/2v> dv.
JR

(ii) L*-equicontinuity estimates for g¢ yield H¢ =, G+ O(+/e) in L.

€

(iii) Then we prove H* = G+ O(+/e) in L.
G—»
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H¢ converges towards G : simplified example

e We consider the diffusive scaling for Fokker-Planck equation
1 € 1 € 1 5 € €
0:8° + v Vgt = :2(11\'\, [vg® + Vg,
and we prove
G(:/g(dv—>G, where 0:G = A,G.
R e—0

e Define :
He(t,x) = / g(t,x —ev,v)dv.
JR
e H¢ SOLVES the limiting equation
O:H® = A HE.

e Therefore, it is sufficient to prove H° ~ G (i.e. equicontinuity for g¢).
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Hamilton-Jacobi approach




Hopf-Cole transform of f¢

e We consider a re-scaled version ¢¢ of ¢

fe(t, x,v,w) = exp <1o'(t,xf v, W)) ,

€

Goal
proving that ¢¢ converges uniformly to
__ Po 2
Po(t,x, v, w) = 5 v = V(t, x)|

with explicit convergence rates .
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Strategy : Hilbert expansion of ¢¢

e ¢° solves
1
Hs 6] + - J51o°] = 0, (2)

where Jg is defined as follows
Jol¢]=—-0vo[0vg + py (v — V)],

e Therefore, we write

o(t,x,v,w) = — % v — Ve(t, x)|? + ed5(t,x, v, w),

where the correction ¢ solves
€ € 1 € €
H1[O1]+;J1[01]:0~ 3)

Then we construct sub/super-solution for the operator Hf + X Js.
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Conclusion and perspectives

Conclusion :

o Weak convergence result with the (formal) optimal convergence rate.
o [! convergence result with deteriorated convergence rate.

e We also prove a convergence result in (inverse Gaussian) weighted [°
spaces and recover the optimal rate by propagating regularity.

e [°° convergence estimates following a Hamilton-Jacobi approach.
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