Concentration phenomena for a FitzHugh-Nagumo neural network

Alain Blaustein, joint work with Francis Filbet 17 mai 2022

Institut de Mathématiques de Toulouse

Introduction

Overview

We consider that neural networks are particle systems. It is possible to describe them through 3 distinct scales :

 $\underline{\mathsf{GOAL}}$: Quantitative analysis of the asymptotic regime

" (mesoscopic scale) $_{\epsilon} \quad \underset{\epsilon \, \rightarrow \, 0}{\longrightarrow} \quad$ macroscopic scale "

Behavior of a single neuron

- We focus on the voltage through the membrane of a neuron.
- Hodgkin & Huxley (52') : precise but complicated model [gif] .
- FitzHugh-Nagumo : simplified model which captures the main features

FitzHugh-Nagumo's model

$$\begin{cases} dv_t = (N(v_t) - w_t + I_{\text{ext}}) dt + \sqrt{2}dB_t, \\ dw_t = A(v_t, w_t) dt, \end{cases}$$

- 2 equations for periodic behavior (v_t : voltage, w_t : adaptation variable).
- Confining assumptions to ensure spikes :

$$A(v, w) = av - bw + c$$
, " $N(v) = v - v^3$ ".

• Noise to take into account random fluctuations.

Microscopic description

FitzHugh-Nagumo neural network of size n

For i between 1 and n:

$$\begin{cases} & dv_t^i = \left(N(v_t^i) - w_t^i + I_{\mathsf{ext}}^i\right)dt + \sqrt{2}dB_t^i, \\ & dw_t^i = A(v_t^i, w_t^i)dt. \end{cases}$$

• Neurons interact following Ohm's law

$$I_{\text{ext}} = -\frac{1}{n} \sum_{i=1}^{n} \Phi(x_i, x_j) (v_t^i - v_t^j).$$

• The conductance $\Phi(x_i, x_j)$ between neuron i and j depend on their spatial location x_i and x_j .

Mesoscopic description : $n \to +\infty$

FitzHugh-Nagumo's mean-field equation

$$\partial_t f + \operatorname{div}_{(v,w)} \left[\begin{pmatrix} N(v) - w - \mathcal{K}_{\Phi}(f) \\ A(v,w) \end{pmatrix} f \right] - \partial_v^2 f = 0,$$

- f(t, x, v, w) is the probability of finding neurons at time $t \ge 0$ and position $x \in K$, with potential $v \in \mathbb{R}$ and adaptation variable $w \in \mathbb{R}$.
- $\mathcal{K}_{\Phi}(f)$ is the non-local term due to interactions between neurons

$$\mathcal{K}_{\Phi}(f)(x,v) = \int_{K \times \mathbb{R}^2} \Phi(x,x')(v-v')f(x',v',w')dx'dv'dw'.$$

References

- E. Luçon and W. Stannat (14').
- S. Mischler, C. Quiñinao and J. Touboul (15').
- J. Crevat (19').

Regime of strong interactions

Weak-Long / Strong-Short decomposition

$$\Phi(x,x') = \underbrace{\Psi(x,x')}_{\text{weak-long range interactions}} + \underbrace{\frac{1}{\epsilon} \delta_0(x-x')}_{\text{strong-short range interactions}}.$$

The mean-field equation rewrites

$$\partial_t f^{\epsilon} + \operatorname{div}_{(v,w)} \left[\begin{pmatrix} N(v) - w - \mathcal{K}_{\Psi}(f^{\epsilon}) \\ A(v,w) \end{pmatrix} f^{\epsilon} \right] - \partial_v^2 f^{\epsilon} = \frac{\rho_0^{\epsilon}}{\epsilon} \partial_v \left[(v - \mathcal{V}^{\epsilon}) f^{\epsilon} \right],$$

where

$$\rho_0^\epsilon(x) = \int_{\mathbb{R}^2} f^\epsilon dv dw \ \text{ and } \ \mathcal{V}^\epsilon(t,x) = \frac{1}{\rho_0^\epsilon} \int_{\mathbb{R}^2} v f^\epsilon dv dw.$$

Main goal

Analysis of the regime of Strong/Local interactions, that is when $\epsilon \to 0$.

Formal derivation

Strong interactions and concentration phenomenon

$$(1): \partial_t f^{\epsilon} + \operatorname{div}_{(v,w)} \left[\begin{pmatrix} N(v) - w - \mathcal{K}_{\Psi}(f^{\epsilon}) \\ A(v,w) \end{pmatrix} f^{\epsilon} \right] - \partial_v^2 f^{\epsilon} = \frac{\rho_0^{\epsilon}}{\epsilon} \partial_v \left[(v - \mathcal{V}^{\epsilon}) f^{\epsilon} \right],$$

• f^{ϵ} converges to a local equilibrium : $\int |v - \mathcal{V}^{\epsilon}|^2 \times (1) \, \mathrm{d}v \, \mathrm{d}w$

$$W_2^2\left(\frac{1}{\rho_0^{\epsilon}}f^{\epsilon},\frac{1}{\rho_0^{\epsilon}}\frac{\delta_{\mathcal{V}^{\epsilon}}\otimes F^{\epsilon}}{\delta_{\mathcal{V}^{\epsilon}}\otimes F^{\epsilon}}\right) = \int_{\mathbb{R}^2}\left|v-\mathcal{V}^{\epsilon}\right|^2f^{\epsilon}dvdw \underset{\epsilon\to 0}{=} \mathcal{O}(\epsilon),$$

where W_2 is the Wasserstein distance of order 2. In the end, we obtain ¹

$$f^{\epsilon}(t,x,v,w) = \delta_{\mathcal{V}(t,x)}(v) \otimes F(t,x,w) + O(\sqrt{\epsilon}),$$

where
$$(\mathcal{V}, \mathcal{F})$$
 satisfies

$$\begin{cases} \partial_t \mathcal{V} = N(\mathcal{V}) - \mathcal{W} - (\Psi *_r \rho_0(x)\mathcal{V} - \Psi *_r (\rho_0 \mathcal{V})(x)), \\ \partial_t F + \partial_w (A(\mathcal{V}, w)F) = 0, \\ \rho_0(x)\mathcal{W} = \int_{\mathbb{R}} wF \, dw. \end{cases}$$
(1)

1. Crevat, Faye, Filbet (19), Jabin, Rey (17), Kang, Vasseur (15)

Concentration profile

ullet To refine our description, we consider a re-scaled version g^{ϵ} of $f^{\epsilon\,2}$:

$$f^{\epsilon}(t,x,v,w) = \frac{1}{\theta^{\epsilon}} g^{\epsilon} \left(t,x,\frac{v - \mathcal{V}^{\epsilon}}{\theta^{\epsilon}}, w - \mathcal{W}^{\epsilon}\right),$$

where $\theta^{\epsilon} > 0$ needs to be determined and

$$\mathcal{W}^\epsilon = rac{1}{
ho_0^\epsilon} \int_{\mathbb{R}^2} w f^\epsilon dv dw \,.$$

Main goal

proving that g^{ϵ} converges and compute the limit.

2. Mouhot, Mischler (06), Rey (12)

Formal derivation

$$f^{\epsilon}(t, x, v, w) = \frac{1}{\theta^{\epsilon}} g^{\epsilon} \left(t, x, \frac{v - \mathcal{V}^{\epsilon}}{\theta^{\epsilon}}, w - \mathcal{W}^{\epsilon} \right).$$

Suppose $\theta^{\epsilon} = \epsilon^{\alpha}$. Changing variables in the equation on f^{ϵ} it yields

$$\partial_{t}g^{\epsilon} + \operatorname{div}_{(v,w)}[b_{0}^{\epsilon}g^{\epsilon}] = \frac{1}{\epsilon^{2\alpha}}\partial_{v}\left(\rho_{0}^{\epsilon}\epsilon^{2\alpha-1}vg^{\epsilon} + \partial_{v}g^{\epsilon}\right),$$

Therefore $\theta^{\epsilon} = \sqrt{\epsilon}$ (i.e. $\alpha = 1/2$) is the only suitable choice

Equation on the profile

$$\partial_t g^{\epsilon} + \operatorname{div}_{(v,w)} [b_0^{\epsilon} g^{\epsilon}] = \frac{1}{\epsilon} \partial_v [\rho_0^{\epsilon} v g^{\epsilon} + \partial_v g^{\epsilon}],$$

where b_0^{ϵ} depends on $1/\sqrt{\epsilon}$ and f^{ϵ} . Therefore, we expect

$$g^{\epsilon}(t, x, v, w) \underset{\epsilon \to 0}{=} \mathcal{M}_{\rho_{0}^{\epsilon}}(v) \otimes G^{\epsilon}(t, x, w) + \frac{O(\sqrt{\epsilon})}{\epsilon}.$$

Weak convergence result

Weak convergence result

Theorem (F. Filbet and A.B.³)

Under suitable assumptions on f_0^ϵ , there exists C>0 such that

$$\sup_{x \in \mathcal{K}} W_2\left(\frac{1}{\rho_0^{\epsilon}} f^{\epsilon}, \frac{1}{\rho_0} \mathcal{M}_{\rho_0/\epsilon}\left(\cdot - \mathcal{V}\right) \otimes F\right) \leq C\left(e^{Ct} \epsilon + e^{-\rho_0^{\epsilon} \, t/\epsilon}\right),$$

for all $\epsilon > 0$ and $t \geq 0$.

Here, W_2 stands for the Wasserstein distance of order 2.

Key arguments of the proof:

- Uniform moment estimates.
- Analytic coupling method ⁴ in order to estimate the Wasserstein distance between g^{ϵ} and $\mathcal{M} \otimes \mathcal{G}$ (\mathcal{G} satisfies (1) after changing variables) .
- Concentration phenomena in Fitzhugh-Nagumo's equations: A mesoscopic approach, arXiv:2201.02363
- 4. Fournier, Perthame (20).

Strong convergence results

Towards strong convergence : time dependent θ^{ϵ}

• $\theta^{\epsilon} = \sqrt{\epsilon}$ induces that at time t = 0, it holds

$$f_0^\epsilon(x,v,w) \,=\, \frac{1}{\sqrt{\epsilon}}\; g_0^\epsilon\left(x,\frac{v-\mathcal{V}_0^\epsilon}{\sqrt{\epsilon}},w-\mathcal{W}_0^\epsilon\right)\,.$$

• Therefore, we impose $\theta^{\epsilon}(t=0)=1$. The only suitable choice is

$$\theta^{\epsilon}(t,x) = \sqrt{\epsilon} \left[1 + \underbrace{e^{-2\rho_{0}^{\epsilon}(x)t/\epsilon} \left(\epsilon^{-1} - 1\right)}_{\text{exponentially decaying remainder}} \right]^{\frac{1}{2}}.$$

The equation on g^{ϵ} rewrites

$$\partial_t g^{\epsilon} \, + \, \mathrm{div}_{(v, \, w)} \, [\, \mathsf{b}_0^{\epsilon} \, g^{\epsilon} \,] = rac{1}{| heta^{\epsilon}|^2} \partial_v \, [\,
ho_0^{\epsilon} \, v \, g^{\epsilon} + \partial_v g^{\epsilon} \,] \, .$$

11/17

11

Strong convergence result

Theorem (A.B. ⁵)

Under suitable assumptions on f_0^{ϵ} , there exists C>0 such that

$$\int_0^t \|f^{\epsilon} - f\|_{L^{\infty}_{x}L^{\mathbf{1}}_{(v,w)}}(s) ds \leq C e^{Ct} \sqrt{\epsilon},$$

for all $\epsilon > 0$ and $t \geq 0$, where the limit f is given by

$$f(t, x, v, w) = \mathcal{M}_{\rho_{\mathbf{0}} \mid \theta^{\epsilon} \mid^{-2}} (v - \mathcal{V}) \otimes F,$$

where (V, F) solves (1).

Large coupling in a FitzHug-Nagumo neural network: quantitative and strong convergence results, arXiv: 2203.14558v2.

Key arguments

- Relative entropy estimate yields $g^\epsilon \underset{\epsilon \to 0}{\sim} \mathcal{M}_{\rho_0^\epsilon} \otimes G^\epsilon + O(\sqrt{\epsilon})$ in L^1 .
- Proving that G^{ϵ} converges towards G:
 - (i) We work on the re-scaled version H^{ϵ}

$$H^{\epsilon} = \int_{\mathbb{R}} g^{\epsilon} \left(t, x, v, w - \epsilon^{3/2} v \right) dv.$$

- (ii) L^1 -equicontinuity estimates for g^{ϵ} yield $H^{\epsilon} = G^{\epsilon} + O(\sqrt{\epsilon})$ in L^1 .
- (iii) Then we prove $H^{\epsilon} = G + O(\sqrt{\epsilon})$ in L^{1} .

13/17

13

H^{ϵ} converges towards \overline{G} : simplified example

• We consider the diffusive scaling for Fokker-Planck equation

$$\partial_t g^{\epsilon} + \frac{1}{\epsilon} v \cdot \nabla_{\mathsf{x}} g^{\epsilon} = \frac{1}{\epsilon^2} \mathrm{div}_{\mathsf{v}} \left[v g^{\epsilon} + \nabla_{\mathsf{v}} g^{\epsilon} \right] \,,$$

and we prove

$$G^{\epsilon} = \int_{\mathbb{R}} g^{\epsilon} dv \xrightarrow[\epsilon \to 0]{} G$$
, where $\partial_t G = \Delta_{\times} G$.

Define

$$H^{\epsilon}(t,x) = \int_{\mathbb{D}} g^{\epsilon}(t,x-\epsilon v,v) dv.$$

• H^{ϵ} SOLVES the limiting equation

$$\partial_t H^{\epsilon} = \Delta_{\mathsf{x}} H^{\epsilon}$$
.

ullet Therefore, it is sufficient to prove $H^\epsilon \sim G^\epsilon$ (i.e. equicontinuity for g^ϵ).

Hamilton-Jacobi approach

Hopf-Cole transform of f^{ϵ}

ullet We consider a re-scaled version ϕ^ϵ of f^ϵ

$$f^{\epsilon}(t, x, v, w) = \exp\left(\frac{1}{\epsilon}\phi^{\epsilon}(t, x, v, w)\right),$$

Goal

proving that ϕ^{ϵ} converges uniformly to

$$\psi_0(t, x, v, w) = -\frac{\rho_0}{2} |v - V(t, x)|^2$$

with explicit convergence rates .

Strategy : Hilbert expansion of ϕ^ϵ

• ϕ^{ϵ} solves

$$H_0^{\epsilon}[\phi^{\epsilon}] + \frac{1}{\epsilon} J_0^{\epsilon}[\phi^{\epsilon}] = 0, \qquad (2)$$

where J_0^{ϵ} is defined as follows

$$J_0^{\epsilon} \left[\phi \right] \, = \, - \, \partial_{\nu} \, \phi \, \left[\, \partial_{\nu} \, \phi \, \, + \, \rho_0^{\epsilon} \, \left(\nu \, - \, \mathcal{V}^{\epsilon} \right) \right] \, , \label{eq:J0}$$

• Therefore, we write

$$\phi^{\epsilon}(t,x,v,w) = -\frac{\rho_{0}^{\epsilon}}{2} |v - \mathcal{V}^{\epsilon}(t,x)|^{2} + \epsilon \phi_{1}^{\epsilon}(t,x,v,w),$$

where the correction ϕ_1^{ϵ} solves

$$H_1^{\epsilon} \left[\phi_1^{\epsilon}\right] + \frac{1}{\epsilon} J_1^{\epsilon} \left[\phi_1^{\epsilon}\right] = 0. \tag{3}$$

Then we construct sub/super-solution for the operator $H_1^{\epsilon} + \frac{1}{\epsilon} J_1^{\epsilon}$.

Conclusion and perspectives

Conclusion:

- Weak convergence result with the (formal) optimal convergence rate.
- L¹ convergence result with deteriorated convergence rate.
- We also prove a convergence result in (inverse Gaussian) weighted L^2 spaces and recover the optimal rate by propagating regularity.
- L^{∞} convergence estimates following a Hamilton-Jacobi approach.

17/1

17